
Andrew login ID:

Full Name:

Recitation Section:

CS 15-213, Spring 2008
Final Exam
Tue. May 6, 2008

Instructions:

• Make sure that your exam is not missing any sheets, then writeyour full name, Andrew login ID, and
recitation section (A–H) on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 72 points.

• This exam is OPEN BOOK. You may use any books or notes you like.No calculators or other
electronic devices are allowed.

• Good luck!

1 (12):

2 (9):

3 (10):

4 (7):

5 (8):

6 (6):

7 (6):

8 (8):

9 (6):

TOTAL (72):

Page 1 of 19

Problem 1. (12 points):
The following problem concerns virtual memory and the way virtual addresses are translated into physical
addresses. Below are the specifications of the system on which the translation occurs.

• The system is a 16-bit machine - words are 2 bytes.

• Memory is byte addressable.

• The maximum size of a virtual address space is 64KB.

• The system is configured with 16KB of physical memory.

• The page size is 64 bytes.

• The system uses a two-level page tables. Tables at both levels are 64 bytes (1 page) and entries in
both tables are 2 bytes as shown below.

In this problem, you are given parts of a memory dump of this system running 2 processes. In each part
of this question, one of the processes will issue a single memory operation (read or write of one byte) to
a single virtual address (as indicated in each part). Your job is to figure out which physical addresses are
accessed by the process if any, or determine if an error is encountered.

Entries in the first and second level tables have in their low-order bits flags denoting various access permis-
sions.

15 2 1 0
Page Table Base Address P

Page Directory Entry
Page Address U W P

Page Table Entry

• P = 1⇒ Present

• W = 1⇒ Writable (applies both in kernel and user mode)

• U = 1⇒ User-mode

The contents of relevant sections of memory is shown on the next page. All numbers are given inhexadec-
imal.

Page 2 of 19

Address Contents
0118 2381
0130 2101
0160 2281
018E 1581
019C 1201
01B8 1A01
120A 2701
1214 27C1
1228 2741
158A 25C1
1594 2541
15A8 2501
1A0A 2041
1A14 20C1
1A28 2081
2106 3FC7
210C 3A47
2118 3587
2286 3107
228C 3447
2298 3007
2386 33C7
238C 3887
2398 3247

For the purposes of this problem, omitted entries have contents = 0.

Page 3 of 19

Process 1 is a process inuser mode (e.g. executing part ofmain()) and has page directory base address
0x0100.
Process 2 is a process inkernel mode (e.g. executing aread() system call) and has page directory base
address0x0180.

For each of the following memory accesses, first calculate and fill in the address of the page directory entry
and the page table entry. Then, if the lookup is successful, give the physical address accessed. Otherwise,
circle the reason for the failure and give the address of the table entry causing the failure. You may use the
16-bit breakdown table if you wish, but you are not required to fill it in.

1. Process 1 writes to0xC1B2.
Scratch space:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(a) Address of PDE:0x

(b) Address of PTE:0x

(c) The result of the address translation is (write NONE if the translation does not result in a valid

address):0x

(d) The result of the access is (circle EXACTLY one):

success / page not present / page not writable / illegal non-supervisor access

Page 4 of 19

2. Process 2 writes to0x728F. Scratch space:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(a) Address of PDE:0x

(b) Address of PTE:0x

(c) The result of the address translation is (write NONE if the translation does not result in a valid

address):0x

(d) The result of the access is (circle EXACTLY one):

success / page not present / page not writable / illegal non-supervisor access

If it’s there and you can see it - it’s real. If it’s not there and you
can see it - it’s virtual. If it’s there and you can’t see it - it’s
transparent. If it’s not there and you can’t see it - you erased it!
- IBM poster explaining virtual memory, 1978.

Page 5 of 19

Problem 2. (9 points):
Consider a 12-bit IEEE floating-point representation with:

• 1 sign bit

• 4 exponent bits (therefore the biasB = 2
4−1 − 1 = 7)

• 7 mantissa bits

Fill in all the blanks in the following table. In the process of converting some numbers to their bit repre-
sentations, you might have to round up or down. If you do, put the rounded value in the “Rounded Value”
column. If you didn’t have to round, put a line through that row’s “Rounded Value” cell. You should use
“round to even” when rounding is needed.

Number Bit representation Rounded Value

32.125

− 71

2048

−255.25

0 1111 0000000 ———-

0 0000 0110000 ———-

0 1001 1111111 ———-

Page 6 of 19

Problem 3. (10 points):
Consider the following x86-64 assembly function, called foo.

foo: # rdi = t, rsi = v
pushq %r12
pushq %rbp
pushq %rbx

.LCFI2:
movq %rdi, %rbx
movq %rsi, %r12
testq %rdi, %rdi
je .L3
movl (%rsi), %ebp
cmpl 24(%rdi), %ebp
jne .L12
jmp .L5

.L7:
cmpl %ebp, 24(%rbx)
jne .L12

.L5:
leal 1(%rbp), %edx
movq 16(%rbx), %rax
addl (%rax,%rdx,4), %ebp
movl %ebp, %eax
jmp .L8

.L12:
movq %r12, %rsi
movq (%rbx), %rdi
call foo
testl %eax, %eax
je .L9
movl %ebp, %eax
jmp .L8

.L9:
movq 8(%rbx), %rbx
testq %rbx, %rbx
jne .L7

.L3:
movl $0, %eax

.L8:
popq %rbx
popq %rbp
popq %r12
ret

Page 7 of 19

Fill in the blanks of the corresponding C code.

• The function used the data structure ”Node” as defined below:

struct Node {
struct Node *left;
struct Node *right;
unsigned int *value;
unsigned int index;

};

• You may use only the C variable names that are defined, not the register names.

int foo(__________________ t , unsigned int * v) {

if (t == _________)
return 0;

if(______________________________) {

return ___;

}

return (___?

__ :

__);
}

Page 8 of 19

Problem 4. (7 points):
Consider the following C code and disassembly of function foo.

int main()
{
char *src = "some string";
char dest[20];

foo(44, src, dest);

return 0;
}

void foo(int arg1, char *arg2, char*arg3)
{
while(*arg2)

*(arg3++) = *(arg2++) + arg1;
}

0x00001fc5 <foo+0>: push %ebp
0x00001fc6 <foo+1>: mov %esp,%ebp
0x00001fc8 <foo+3>: sub $0x8,%esp
0x00001fcb <foo+6>: jmp 0x1fe7 <foo+34>
0x00001fcd <foo+8>: mov 0xc(%ebp),%eax
0x00001fd0 <foo+11>: movzbl (%eax),%edx
0x00001fd3 <foo+14>: mov 0x8(%ebp),%eax
0x00001fd6 <foo+17>: add %eax,%edx
0x00001fd8 <foo+19>: mov 0x10(%ebp),%eax
0x00001fdb <foo+22>: mov %dl,(%eax)
0x00001fdd <foo+24>: lea 0xc(%ebp),%eax
0x00001fe0 <foo+27>: incl (%eax)
0x00001fe2 <foo+29>: lea 0x10(%ebp),%eax
0x00001fe5 <foo+32>: incl (%eax)
0x00001fe7 <foo+34>: mov 0xc(%ebp),%eax
0x00001fea <foo+37>: movzbl (%eax),%eax
0x00001fed <foo+40>: test %al,%al
0x00001fef <foo+42>: jne 0x1fcd <foo+8>
0x00001ff1 <foo+44>: leave
0x00001ff2 <foo+45>: ret

Page 9 of 19

While debugging the above code, you open a GDB session and examine the stack at the entry point to foo.

(gdb) break foo
Breakpoint 1 at 0x1fcb

(gdb) run
Breakpoint 1, 0x00001fcb in foo ()

(gdb) x/40w $esp
0xbffff8f0: 0x00000000 0x00000009 0xbffff938 0x00001fba
0xbffff900: 0x0000002c 0x00001ff3 0xbffff918 0x8fe005bc
0xbffff910: 0x00000000 0x00000000 0x00000000 0x00000000
0xbffff920: 0x00000000 0x00000000 0x8fe0154b 0x00001ff3
0xbffff930: 0x00000000 0xbffff9cc 0xbffff95c 0x00001f5e
0xbffff940: 0x00000001 0xbffff964 0xbffff96c 0xbffff9cc
0xbffff950: 0x00000000 0x00000000 0x00000000 0x00000000
0xbffff960: 0x00000001 0xbffff9f4 0x00000000 0xbffffa11
0xbffff970: 0xbffffa4a 0xbffffa66 0xbffffa77 0xbffffa87
0xbffff980: 0xbffffac1 0xbffffaf6 0xbffffb0f 0xbffffb3b

Using the above information, please fill in the addresses forthe following objects. Objects that correspond
to variables are written in bold. Do not write thevalues of any of the items in the table, write only their
addresses.

Object Address

src[0]

dest[0]

arg1

arg2

arg3

caller’s return address

caller’s saved base pointer

Page 10 of 19

Problem 5. (8 points):
The problem requires understanding how C code accessing structures, unions, and arrays is compiled. As-
sume the x86-64 conventions for data sizes and alignments.

#include "def.h"

typedef struct {
int x[A][B]; /* Unknown constant A and B */
double y;

} str1;

typedef struct{
str1 data[B]; /* Unknown constant B */
int idx;

} str2;

typedef union{
float t ;
str2 S[3];
str1 V;

} uni;

void setVal(str2 *p, double val) {
int i = p->idx;
p->data[i].y = val;

}

You do not have a copy of the file def.h, in which constants A andB are defined, but you have the following
x86-64 assembly code for the function setVal:

setVal:
rdi = p, rsi = val
movslq 1728(%rdi),%rax
leaq (%rax,%rax,2), %rax
salq $6, %rax
movq %rsi, 184(%rax,%rdi)
ret

Based on this code, determine the values of the two constantsand the size of the union:

A = ________________

B = ________________

Size of uni = _______________

Page 11 of 19

Problem 6. (6 points):
The 15-213fish machines contain Intel XeonNocona processors. The L1 data cache organization is
as follows.

• 16 kilobyte total size

• 4-way associative

• 64-byte line size

• write-through

Consider the functionvsum() defined below, shown in C and in x86-64 assembly language. Assume that
the arraya begins at address 0x00000000001000000 and the arrayb begins right aftera. Assume for each
part of the question that the cache is “cold” (empty).

#define X 128
double a[X], b[X];

double vsum(double *v1, double *v2, int n)
{

double s = 0.0;
int i;

for (i = 0; i < n; ++i)
s += v1[i] + v2[i];

return (s);
}

.globl vsum
vsum: # %rdi=v1, %rsi=v2, %edx=n

testl %edx, %edx
xorpd %xmm1, %xmm1
jle .L4
xorpd %xmm1, %xmm1
xorl %ecx, %ecx
xorl %eax, %eax

.L5:
movsd (%rdi,%rax,8), %xmm0
addl $1, %ecx
addsd (%rsi,%rax,8), %xmm0
addq $1, %rax
cmpl %edx, %ecx
addsd %xmm0, %xmm1
jne .L5

.L4:
movapd %xmm1, %xmm0
ret

Page 12 of 19

1. How many sets does the L1 cache contain?

No of sets: __________

2. What is the miss rate in the L1 cache ifvsum() is invoked asvsum(a, b, X)?

Miss rate: __________

3. What is the miss rate in the L1 cache ifvsum() is invoked asvsum(a, a, X)?

Miss rate: __________

Page 13 of 19

Problem 7. (6 points):
Consider the following code:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

int main() {
char c;
int file1 = open("buffer.txt", O_RDONLY);
int file2;

read(file1, &c, 1);
file2 = dup(file1);
read(file1, &c, 1);
read(file2, &c, 1);
printf("1 = %c\n", c);

int pid = fork();
if (pid == 0) {
close(file1);
file1 = open("buffer.txt", O_RDONLY);

read(file1, &c, 1);
printf("2 = %c\n", c);
read(file2, &c, 1);
printf("3 = %c\n", c);

exit(0);
} else {
waitpid(pid, NULL, 0);

printf("4 = %c\n", c);

close(file2);
dup2(file1, file2);

read(file1, &c, 1);
printf("5 = %c\n", c);
read(file2, &c, 1);
printf("6 = %c\n", c);

}

return 0;
}

Page 14 of 19

Assume that the disk filebuffer.txt contains the string of bytessource. Also assume that all system
calls succeed. What will be output when this code is compiledand run? You may not need all the lines in
the table given below.

Output Line Number Output

1st line of output

2nd line of output

3rd line of output

4th line of output

5th line of output

6th line of output

7th line of output

8th line of output

9th line of output

Page 15 of 19

Problem 8. (8 points):
This problem tests your understanding of pointer arithmetic, pointer dereferencing, and malloc implemen-
tation.

Harry Q. Bovik has decided to exercise his creativity and hascreated the most exotic dynamic memory
allocator that the 213 staff has ever seen. The following is adescription of Harry’s block structure:

KEY PAYLOAD FTR

• KEY - Key of the block (4 bytes).

• PAYLOAD - Payload of the block (arbitrary size).

• FTR - Footer of the block (4 bytes).

Harry has decided to store a key in the beginning of each blockinstead of a header; Harry has a secret way
of computing the size of the block’spayload from the key. The size of the KEY field is 4 bytes.

Harry has also decided to store the size of a block’s payload in the footer of the block. Since there is an
8-byte alignment requirement, the least significant of the 3unused bits is used to indicate whether the block
is free (0) or allocated (1).

Note that Harry is working on a 32-bit machine. You can assumethe following:

• sizeof(int) == 4 bytes,

• sizeof(char) == 1 byte,

• sizeof(short) == 2 bytes,

• sizeof(long) == 4 bytes,

• and the size of any pointer (e.g.,char *) is 4 bytes.

Page 16 of 19

Your task is to help Harry get the correct key (using the function get key()), by indicating which of the
following implementations of theGET KEY macro are correct. For each of the proposed solutions listed
below, fill in the blank with eitherYes for correct orNo for incorrect.

/* get_key returns the key of a block.
bp is pointing to the first byte of
a block returned from Harry’s malloc().

*/

#define GET_KEY(p) ??

int get_key(void *bp) {
return (int)(GET_KEY(bp));

}

/* A. */
#define GET_KEY(p) (*(char *)((int *)(p) - 1)) ________

/* B. */
#define GET_KEY(p) (*(int *)((short **)(p) - 2)) ________

/* C. */
#define GET_KEY(p) (*(long *)((char *)(p) - 4)) ________

/* D. */
#define GET_KEY(p) (*(long *)((long **)(p) - 1)) ________

/* E. */
#define GET_KEY(p) (*(int *)((long)(p) - 4)) ________

/* F. */
#define GET_KEY(p) (*(int *)((char)(p) - 4)) ________

/* G. */
#define GET_KEY(p) (*(int *)((int **)(p) - 1)) ________

/* H. */
#define GET_KEY(p) (*(short *)((short *)(p) - 2)) ________

Page 17 of 19

Consider the code written by Harry Q. Bovik for the followingproblem.

pthread_mutex_t *count_l, *l_count;
int ref_count, tid_1, tid_2, tid_3, tid_4;

void *thread1(void *vargp) {
tid_2 = pthread_self();
pthread_mutex_lock(count_l);
ref_count++;
pthread_mutex_unlock(count_l);
return(0);

}
void *thread2(void *vargp) {

tid_1 = pthread_self();
pthread_mutex_lock(count_l);
pthread_kill(pthread_self(), SIGKILL);
ref_count++;
pthread_mutex_unlock(count_l);
return(0);

}
void *thread3(void *vargp) {

tid_3 = pthread_self();
pthread_mutex_lock(count_l);
pthread_mutex_lock(l_count);
ref_count++;
pthread_mutex_unlock(l_count);
pthread_mutex_unlock(count_l);
return(0);

}
void *thread4(void *vargp) {

tid_4 = pthread_self();
pthread_mutex_lock(l_count);
pthread_mutex_lock(count_l);
ref_count--;
pthread_mutex_unlock(l_count);
pthread_mutex_unlock(count_l);
return(0);

}
void func1(void) {

pthread_t t1,t2;
pthread_create(&t1,NULL, thread1, NULL);
pthread_create(&t2, NULL, thread2, NULL);
pthread_join(t2, NULL);
pthread_join(t1, NULL);
exit(0);

}
void func2(void) {

pthread_t t3, t4;
pthread_create(&t4,NULL, thread4, NULL);
pthread_create(&t3, NULL, thread3, NULL);
pthread_join(t3, NULL);
pthread_join(t4, NULL);
exit(0);

}

Page 18 of 19

Problem 9. (6 points):
Please assume that all necessary header files are included inthe code and all system calls and accessory
functions always succeed. You may assume that the locks havebeen initialized correctly inmain(), which
we do not show.

1. Bovik comes to you and complains thatfunc1() seems to misbehave. Is he lying or is there some-
thing wrong with his code? Defend your answer in 1-3 sentences.

2. Bovik is complaining aboutfunc2() as well. He insists to your boss that this program sometimes
hangs and your boss would like your opinion. Is Bovik lying again or is there a problem? Defend
your answer in 1-3 sentences.

Page 19 of 19

