
Andrew login ID (Use block letters):

Full Name (Use block letters):

15-213 (18-243), Fall 2010
Final Exam

Friday, December 10. 2010

Instructions:

• Make sure that your exam is not missing any sheets, then writeyour Andrew login ID and full name
on the front. Please write using clear block letters!

• This exam is closed book, closed notes, although you may use two 8 1/2 x 11 sheets of paper with
your own notes. You may not use any electronic devices.

• The exam has a maximum score of 98 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Good luck!

1 (20):

2 (10):

3 (06):

4 (08):

5 (09):

6 (10):

7 (07):

8 (06):

9 (10):

10 (06):

11 (06):

TOTAL (98):

Page 1 of 22

Problem 1. (20 points):
Short answer and multiple choice questions on a variety of stimulating and refreshing topics.

1. Label the following networking system calls 1,2,3,4 or 5,in the order they should be called. [2 pts]
(label with an X if the call is not used; a blank will receive nocredit)

Client Server
listen ____ ____
connect ____ ____
accept ____ ____
socket ____ ____
bind ____ ____

The remaining questions are multiple choice. Write the correct answer for each question in the fol-
lowing table:

1 2 3 4 5 6 7 8 9 10
X

11 12 13 14 15 16 17 18 19 20
X

2. Which of the following is NOT a universal property of reader-writer locks?

(a) Readers can only look at a shared item; writers can also modify it.

(b) If a writer has access to the item, then no other thread also has access.

(c) Any number of readers can read the item at the same time.

(d) A writer waiting for an RW lock will get preference over subsequent read requests.

3. Starvation (in relation to threads) refers to:

(a) A thread waiting for a lock indefinitely.

(b) A semaphore that gets locked but the thread never unlocksit after use.

(c) A thread is spawned but never joins the main thread when finished.

(d) A process fails to spawn a new thread because it’s hit the maximum number of threads allowed.

4. How does x86 assembly store the return value when a function is finished?

(a) Theret instruction stores it in a special retval register.

(b) By convention, it is always in%eax.

(c) It is stored on the stack just above the(%ebp) of the callee.

(d) It is stored on the stack just above all the arguments to the function.

Page 2 of 22

5. In IEEE floating point, what would be an effect of allocating more bits to the exponent part by taking
them from the fraction part?

(a) You could represent fewer numbers, but they could be muchlarger.

(b) You could represent the same numbers, but with more decimal places.

(c) You could represent both larger and smaller numbers, butwith less precision.

(d) Some previously representable numbers would now round to infinity

6. Consider the following two blocks of code, found inseparate files:

/* main.c */
int i=0;
int main()
{

foo();
return 0;

}

/* foo.c */
int i=1;
void foo()
{

printf(‘‘%d’’, i);
}

What will happen when you attempt to compile, link, and run this code?

(a) It will fail to compile.

(b) It will fail to link.

(c) It will raise a segmentation fault.

(d) It will print “0”.

(e) It will print “1”.

(f) It will sometimes print “0” and sometimes print “1”.

7. Which of the following is an example of external fragmentation?

(a) A malloc’ed block needs to be padded for alignment purposes.

(b) A user writes data to a part of the heap that isn’t the payload of a malloc’ed block.

(c) There are many disjoint free blocks in the heap.

(d) A user malloc’s some heap space and never frees it.

8. Which of the following is NOT the default action for any signal?

(a) The process terminates all of its children.

(b) The process terminates and dumps core.

(c) The process terminates.

(d) The process stops until restarted by a SIGCONT signal.

Page 3 of 22

9. Which of the following is FALSE concerning x86-64 architecture?

(a) A double is 64 bits long.

(b) Registers are 64 bits long.

(c) Pointers are 64 bits long.

(d) Pointers point to locations in memory that are multiplesof 64 bits apart.

10. Consider the following block of code:

int main()
{

int a[213];
int i;
//int j = 15;
for(i = 0; i < 213; i++)
a[i] = i;
return 0;
a[0] = -1;

}

Which of the following instances of ’bad style’ is present?

(a) Dead code.

(b) Magic numbers.

(c) Poor indentation.

(d) All of the above.

Page 4 of 22

11. Consider the following structure declarations on a 64-bit Linux machine.

struct RECORD {
long value2;
double value;
char tag[3];

};

struct NODE {
int ref_count;
struct RECORD record;
union {

double big_number;
char string[12];

} mix;
};

Also, a global variable namedmy node is declared as follows:

struct NODE my_node;

If the address ofmy node is 0x6008e0 , what is the value of&my node.record.tag[1] ?

(a) 0x6008f8

(b) 0x6008fa

(c) 0x6008f9

(d) 0x6008f5

(e) 0x6008f1

12. With reference to the previous question, what is the sizeof my node in bytes ?

(a) 48

(b) 44

(c) 40

(d) 42

(e) 50

13. Which of the following x86 instructions can be used to addtwo registers and store the result without
overwriting either of the original registers?

(a) mov

(b) lea

(c) add

(d) None of the above

Page 5 of 22

14. Which of these uses of caching is not crucial to program performance?

(a) Caching portions of physical memory

(b) Caching virtual address translations

(c) Caching virtual addresses

(d) Caching virtual memory pages

(e) None of the above (that is, they are all crucial)

15. Assuming all the system calls succeed, which of the following pieces of code will print the word
”Hello” to stdout ?

(a) int fd = open("hoola.txt", O_RDWR);
dup2(fd, STDOUT_FILENO);
printf("Hello");
fflush(stdout);

(b) int fd = open("hoola.txt", O_RDWR);
dup2(fd, STDOUT_FILENO);
write(STDOUT_FILENO, "Hello", 5);

(c) int fd = open("hoola.txt", O_RDWR);
dup2(fd, STDOUT_FILENO);
printf("Hello");

(d) int fd = open("hoola.txt", O_RDWR);
dup2(STDOUT_FILENO, fd);
write(fd, "Hello", 5);

(e) int fd = open("hoola.txt", O_RDWR);
dup2(fd, STDOUT_FILENO);
write(fd, "Hello", 5);

16. Consider the following piece of code. Note that the file name is the same for both calls toopen , and
assume the fileone.txt exists.

int fd = open("one.txt", O_RDWR);
int fd2 = open("one.txt", O_RDONLY);

Which of the following statement is true?

(a) fd andfd2 will share the same file offset

(b) fd2 will be invalid because you cannot have two open file descriptors referring to the same file
at the same time.

(c) Both fd andfd2 will have an initial file offset that is set to the end of the file

(d) Whatever is written to the file throughfd , can be read usingfd2

(e) In total, there will be two copies of the fileone.txt in memory, one associated withfd and
the other withfd2 . Any changes made in a copy willnot be reflected in the other copy.

Page 6 of 22

17. In malloclab, we provided code for an implicit list allocator (the naive implementation). Many stu-
dents improved this code by creating an explicit linked listof free blocks. Which of the following
reason(s) explain(s) why an explicit linked list implementation has better performance?

I. Immediate coalescing when freeing a block is significantly faster for an explicit list

II. The implicit list had to include every block in the heap, whereas the explicit list could just
include the free blocks, making it faster to find a suitable free block.

III. Inserting a free block into an explicit linked list is significantly faster since the free block can
just be inserted at the front of the list, which takes constant time.

(a) I only.

(b) II only.

(c) III only.

(d) II and III only.

(e) All I, II and III.

18. Suppose a local variableint my int is declared in a function namedfunc . Which of the following
is considered safe in C?

(a) func returns&my int and the caller dereferences the returned pointer.

(b) func returns&my int and the caller prints the returned pointer to the screen

(c) func sets the value of a global variable to&my int and returns. The global variable is un-
changed up to the point another function dereferences the global variable.

(d) None of the above

19. If a parent forks a child process, to which resources might they need to synchronize their access to
prevent any unexpected behavior?

(a) malloc’ed memory

(b) stack memory

(c) global variables

(d) file descriptors

(e) None of the above

Page 7 of 22

Problem 2. (10 points):
Floating point encoding.In this problem, you will work with floating point numbers based on the IEEE
floating point format. We consider two different formats:

Format A: 8-bit floating point numbers:

• There is one sign bits. s = 1 indicates negative numbers.

• There arek = 4 exponent bits. The bias is2k−1 − 1 = 7.

• There aren = 3 fraction bits.

Format B: 9-bit floating point numbers:

• There is one sign bits. s = 1 indicates negative numbers.

• There arek = 4 exponent bits. The bias is2k−1 − 1 = 7.

• There aren = 4 fraction bits.

1. How would you represent positive infinity usingformat A?

Binary representation for positive infinity:_____________

2. How would you represent
√
−100 usingformat B?

Give an example binary representation:_____________

3. For formats A and B, please write down the binary representation and the corresponding values for
the following (use round-to-even):

Description Format A binary Format A value Format B binary Format B value

Zero 0 0000 000 0 0 0000 0000 0

Largest normalized value

Smallest positive number

Negative one −1 −1

2.625

Page 8 of 22

Problem 3. (6 points):

Accessing arrays.Consider the C code below, where H and J are constants declared with #define .

int array1[H][J];
int array2[J][H];

void copy_array(int x, int y) {
array2[y][x] = array1[x][y];

}

Suppose the above C code generates the following x86-64 assembly code:

On entry:
%edi = x
%esi = y
#
copy_array:

movslq %esi,%rsi
movslq %edi,%rdi
leaq (%rsi,%rsi,8), %rdx
addq %rdi, %rdx
movq %rdi, %rax
salq $4, %rax
subq %rdi, %rax
addq %rsi, %rax
movl array1(,%rax,4), %eax
movl %eax, array2(,%rdx,4)
ret

What are the values ofHandJ?

H =

J =

Page 9 of 22

Problem 4. (8 points):

Assembly/C translation.Consider the following C code and assembly code for an interesting function:

int rofl(int *a, int n) 40055c <rofl>:
{ 40055c: test %esi,%esi

int i, k; 40055e: jle 40058e <rofl+0x32>
400560: mov %rdi,%r8

for(i = 0; i < n; i++) 400563: mov $0x0,%ecx
{ 400568: mov (%r8),%edx

k = a[i]; 40056b: cmp %edx,%ecx
40056d: je 400583 <rofl+0x27>

if(i == k) 40056f: movslq %edx,%rax
{ 400572: lea (%rdi,%rax,4),%r9

________; 400576: mov (%r9),%eax
} 400579: cmp %edx,%eax

40057b: je 400593 <rofl+0x37>
if(________) 40057d: mov %eax,(%r8)
{ 400580: mov %edx,(%r9)

return k; 400583: add $0x1,%ecx
} 400586: add $0x4,%r8

40058a: cmp %ecx,%esi
a[i] = ________; 40058c: jg 400568 <rofl+0xc>
a[k] = k; 40058e: mov $0xffffffff,%edx

} 400593: mov %edx,%eax
400595: retq

return ________;
}

A. Using your knowledge of C and assembly, fill in the blanks above with the appropriate expressions.

B. Extra credit (1 point).Briefly describe what therofl function does. Hint: Think about what happens
when every integerk in the arraya satisfies0 ≤ k ≤ n − 1.

Page 10 of 22

Problem 5. (9 points):
Representing and accessing structures.The following problems concern the compilation of C code involv-
ing struct ’s.

A. In the following C code, the declarations of data typestype1_t andtype2_t are given bytypedef ’s,
and the declaration of the constantCNTis given by a#define :

typedef struct {
type1_t y[CNT];
type2_t x;

} a_struct;

void p1(int i, a_struct *ap) {
ap->y[i] = ap->x;

}

Compiling the code for IA32 gives the following assembly code:

i at 8(%ebp), ap at 12(%ebp)
p1:

pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
movsbl 28(%eax),%ecx
movl 8(%ebp), %edx
movl %ecx, (%eax,%edx,4)
popl %ebp
ret

Give a combination of values for the two data types andCNTthat could yield the above assembly
code:

type1_t :

type2_t :

CNT:

Page 11 of 22

B. In the following C code, the declaration of data typetype_t is given by atypedef , and the
declaration of the constantCNTis given by a#define :

typedef struct {
int left;
type_t m[CNT];
int right;

} b_struct;

int p2(int i, b_struct *bp) {
return bp->left * bp->right;

}

For some combinations oftype_t andCNT, the following x86-64 code is generated:

bp in %rsi
p2:

movl 24(%rsi), %eax
imull (%rsi), %eax
ret

For each of the combinations below, indicate whether it could (Y) or could not (N) cause the above
code to be generated:

type_t CNT Generated? (Y/N)

int 6

short 9

char 17

char * 5

double 2

struct { int i; double d[2]; } 1

Page 12 of 22

Problem 6. (0xa points):

The stack discipline.This problem deals with stack frames in Intel IA-32 machines. Consider the following
C function and corresponding assembly code.

struct node_t;
typedef struct node_t{

void * elem;
struct node_t *left;
struct node_t *right;

} node;

void oak(node * tree, void (*printFunc)(node *)){
/*POINT A*/
(*printFunc)(tree);
if (tree->left) {

/*POINT B*/
oak(tree->left,printFunc);

}
if (tree->right) {

oak(tree->right,printFunc);
}

}

00000000 <oak>:
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 ec 18 sub $0x18,%esp
6: 89 5d f8 mov %ebx,0xfffffff8(%ebp)
9: 89 75 fc mov %esi,0xfffffffc(%ebp)
c: 8b 5d 08 mov 0x8(%ebp),%ebx
f: 8b 75 0c mov 0xc(%ebp),%esi

12: 89 1c 24 mov %ebx,(%esp)
/*POINT A*/

15: ff d6 call *%esi
17: 8b 43 04 mov 0x4(%ebx),%eax
1a: 85 c0 test %eax,%eax
1c: 74 0c je 2a <oak+0x2a>
1e: 89 74 24 04 mov %esi,0x4(%esp)
22: 89 04 24 mov %eax,(%esp)

/*POINT B*/
25: e8 fc ff ff ff call 26 <oak+0x26>
2a: 8b 43 08 mov 0x8(%ebx),%eax
2d: 85 c0 test %eax,%eax
2f: 74 0c je 3d <oak+0x3d>
31: 89 74 24 04 mov %esi,0x4(%esp)
35: 89 04 24 mov %eax,(%esp)
38: e8 fc ff ff ff call 39 <oak+0x39>
3d: 8b 5d f8 mov 0xfffffff8(%ebp),%ebx
40: 8b 75 fc mov 0xfffffffc(%ebp),%esi
43: 89 ec mov %ebp,%esp
45: 5d pop %ebp
46: c3 ret

(over)

Page 13 of 22

Please draw a picture of the stack frame, starting with any arguments that might be placed on the stack for
theoak function, showing the stack at each of pointsA, andB, as specified in the code above. Your diagram
should only include actual values where they are known, if you do not know the value that will be placed on
the stack, simply label what it is (i.e., ”old ebp”).

Page 14 of 22

Stack A: Stack B:

Page 15 of 22

Problem 7. (7 points):
Cache memories.In this problem, we will consider the performance of the cache. You can make the
following assumptions:

• There’s only one level of cache.

• Block size is 4 bytes.

• The cache has 4 sets.

• Each cache set has two lines.

• Replacement policy is LRU.

Consider the following function which sets a4 × 4 square in the upper left corner of an array to zero. You
should assume that only operations involvingarray change the cache, thatarray[0][0] is at address
0x1000000 , and that the cache is empty whenclear4x4 is called.

#define LENGTH 8

void clear4x4(char array[LENGTH][LENGTH]){
int row, col;
for(col = 0; col < 4; col++){

for(row = 0; row < 4; row++){
array[row][col] = 0;

}
}

}

A. (3 pts) How many cache misses will there by whenclear4x4 is called?

Number of cache misses:_________________

B. (3 pts) IfLENGTHis changed to 16 how many cache misses willclear4x4 have when called?

Number of cache misses:_________________

C. (1 pt) If LENGTHis changed to 17, will callingclear4x4 have a larger, smaller, or equal number
of cache misses than whenLENGTHis 16? Circle the correct answer.

• 16 × 16 will have MORE misses than17 × 17.

• 16 × 16 and17 × 17 will have an EQUAL number of MISSES.

• 17 × 17 will have MORE misses than16 × 16.

Page 16 of 22

Problem 8. (6 points):

Processes vs. threads.This problem tests your understanding of the some of the important differences
between processes and threads. Consider the following C program:

#include "csapp.h"

/* Global variables */
int cnt;
sem_t mutex;

/* Helper function */
void *incr(void *vargp)
{

P(&mutex);
cnt++;
V(&mutex);
return NULL;

}

int main()
{

int i;
pthread_t tid[2];

sem_init(&mutex, 0, 1); /* mutex=1 */

/* Processes */
cnt = 0;
for (i=0; i<2; i++) {

incr(NULL);
if (fork() == 0) {

incr(NULL);
exit(0);

}
}
for (i=0; i<2; i++)

wait(NULL);
printf("Procs: cnt = %d\n", cnt);

/* Threads */
cnt = 0;
for (i=0; i<2; i++) {

incr(NULL);
pthread_create(&tid[i], NULL, incr, NULL);

}
for (i=0; i<2; i++)

pthread_join(tid[i], NULL);
printf("Threads: cnt = %d\n", cnt);

exit(0);
}

A. What is the output of this program?

Procs: cnt = ___

Threads: cnt = ___

Page 17 of 22

Problem 9. (10 points):
Virtual memory. You are taking an operating systems class where you must write a kernel that supports
virtual memory. Unfortunately, you have been stuck with a not-so-bright partner who is under the illusion
that address translations are performed by the kernel. Without consulting you, he went ahead and wrote a
translation function, calledlog to phys , which is shown on the following page.

Address translations are actually done by hardware of course, but you realize that by studying your partner’s
code, you can learn some valuable information about the system – information that will earn you 10 points
on your 213 final exam!

As you study your partner’s code, keep in mind the following things:

1. Pointers andunsigned int ’s are both2 bytes long on this particular system
(i.e.,sizeof(unsigned int) = 2 andsizeof(void *) = 2).

2. You do not have to worry about any type of pointer arithmetic in this problem.

3. Although the code is silly in the sense that translations are not done in software, you can assume that
the functionality is correct.

(over)

Page 18 of 22

/* Note to self: Recall that on this machine, sizeof(unsigne d int) = 2
and sizeof(void *) = 2 */

/*
* log_to_phys - logical is a variable which contains a virtua l
* address. The physical translation is returned.
*/

void * log_to_phys (void * logical, void ** pd_base)
{

/* Casting to unsigned int is done so you don’t
have to worry about any pointer arithmetic */

unsigned int logical_addr = (unsigned int) logical;
unsigned int pd_base_u = (unsigned int) pd_base;

unsigned int offset = logical_addr & (0x1F);
unsigned int temp = logical_addr >> 5;
unsigned int index1 = (temp & 0x780) >> 7;
unsigned int index2 = temp & 0x7F;

unsigned int * pde_addr = (unsigned int *) (pd_base_u + (inde x1 << 1));
unsigned int entry1 = *pde_addr;

/* Check valid bit */
if(!(entry1 & 0x1)) {

/* This is how you throw a page fault, right? */
return NULL;

}

/* Discard the valid bit now */
entry1 = entry1 & (˜0x1);

unsigned int * pte_addr = (unsigned int *) (entry1 + (index2 < < 1));
unsigned int entry2 = *pte_addr;

/* Check valid bit */
if(!(entry2 & 0x1)) {

/* This is how you throw a page fault, right? */
return NULL;

}

/* Discard the valid bit now */
entry2 = entry2 & (˜0x1);

/* This is the logical address! */
return ((void *) (entry2 | offset));

}

Page 19 of 22

The following questions refer to the code on the previous page:

1. How many bytes are the pages (virtual and physical pages are the same size)?

2. How many entries are in the page directory for this architecture?

3. How many bytes long is each entry of the page directory?

4. How many entries are in each page table for this architecture?

5. How many bytes long is each entry of a page table?

Page 20 of 22

Problem 10. (6 points):

Signals.Consider the following two different snippets of C code. Assume all functions return without error,
no signals are sent from other processes, andprintf is atomic.

Code Snippet 1:

int main() {
int pid = fork();
if(pid > 0){

kill(pid, SIGKILL);
printf("a");

}else{
/* getppid() returns the pid

of the parent process */
kill(getppid(), SIGKILL);
printf("b");

}
}

Code Snippet 2:

int a = 1;

void handler(int sig){
a = 0;

}

void emptyhandler(int sig){
}

int main() {
signal(SIGINT, handler);
signal(SIGCONT, emptyhandler);

int pid = fork();
if(pid == 0){

while(a == 1)
pause();

printf("a");
}else{

kill(pid, SIGCONT);
printf("b");
kill(pid, SIGINT);
printf("c");

}
}

For each code snippet write a Y next to an outcome if it could occur, otherwise write N.

Snippet 1 Outcome Possible? (Y/N)

Nothing is printed.

“a” is printed.

“b” is printed.

“ab” is printed.

“ba” is printed.

A process does not terminate.

Snippet 2 Outcome Possible? (Y/N)

Nothing is printed.

“ba” is printed.

“abc” is printed.

“bac” is printed.

“bca” is printed.

A process does not terminate.

Page 21 of 22

Problem 11. (6 points):

Synchronization.This problem is about synchronizing a producer/consumer system that shares a queue
between two threads:

• The code for the producer/consumer system is shown on the following page.

• Theproducer threadadds data items to the back of the queue, and theconsumer threadremoves and
processes data items from the front of the queue.

• The queue is initially empty, and has a capacity of 10 data items.

• The producer thread can only create 2 items at a time. Similarly, the consumer must consume 3 items
at a time. In particular, theproduce2 function, which is called by the producer thread, produces
and adds two data items to the queue each time it is called. Similarly, theconsume3 function, which
is called by the consumer thread, removes 3 data items from the queue each time it is called. (These
function declarations are not shown here.)

Your task is to modify the code on the following page:

• Add the necessary semaphore operations to guarantee theproduce-2-itemsandconsume-3-itemsre-
quirements.

• Add the appropriate callssem init to initialize the two semaphores to the correct values.

Recall that semaphore functions have the following prototypes:

• P(sem t *sem);

• V(sem t *sem);

• sem init(sem t *sem, NULL, unsigned int val);

(over)

Page 22 of 22

Here is the code that you will update:

#include <pthread.h>
#include <semaphore.h>

/* Semaphores */
sem_t cons_sem, prod_sem;

/* Producer thread */
void* producer(void* vargp)
{

while(1){
/* Insert semaphore operation(s) here */

produce2(); /* Produce 2 items */
/* Insert semaphore operation(s) here */

}
return NULL;

}

/* Consumer thread */
void * consumer(void* vargp)
{

while(1){
/* Insert semaphore operation(s) here */

consume3(); /* Consume 3 items */
/* Insert semaphore operation(s) here */

}
return NULL;

}

/* Main routine */
int main()
{

pthread_t tid;

/* Initialize semaphores */

pthread_create(&tid, NULL,
producer, NULL);

pthread_create(&tid, NULL,
consumer, NULL);

return;
}

Page 23 of 22

