
Andrew login ID:

Full Name:

CS 15-213, Fall 2003

Exam 1
October 7, 2003

Instructions:

� Make sure that your exam is not missing any sheets, then writeyour full name and Andrew login ID
on the front.

� Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

� The exam has a maximum score of 55 points.

� The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

� This exam is OPEN BOOK. You may use any books or notes you like.You may use a calculator, but
no laptops or other wireless devices. Good luck!

1 (09):

2 (10):

3 (04):

4 (08):

5 (06):

6 (06):

7 (08):

8 (04):

TOTAL (55):

Page 1 of 11

Problem 1. (9 points):
For this problem, assume the following:

� We are running code on a
�
-bit machine using two’s complement arithmetic for signed integers.

� short integers are encoded using� bits.

� Sign extension is performed whenever ashort is casted to anint

� Right shiftsints are arithmetic.

Fill in the empty boxes in the table below. The following definitions are used in the table:

short sy = -3;
int y = sy;
int x = -17;
unsigned ux = x;

Note: You need not fill in entries marked with “–”.

Expression Decimal Representation Binary Representation

Zero �

– ��

– 01 0010

��

�

� �� �

TMax

�TMin

TMin 	 TMin

Page 2 of 11

Problem 2. (10 points):

Consider the following 12-bit floating point representation based on the IEEE floating point format:

� There is a sign bit in the most significant bit.

� The next� � � bits are the exponent. The exponent bias is 7.

� The last� � � bits are the significand.

Numeric values are encoded in this format as a value of the form � � ����� 	
 	 �� , where is the sign
bit, � is exponent after biasing, and
 is the significand.

Part I

How many FP numbers are in the following intervals�� � ��?
For each interval�� � ��, count the number of� such that� � � � �.

A. Interval �� � �� : ________

B. Interval �� � �� : ________

Part II

Answer the following problems using either decimal (e.g.,� ����) or fractional (e.g.,����) representations
for numbers that are not integers.

A. For denormalized numbers:

(a) What is the value� of the exponent after biasing?________

(b) What is the largest value
 of the significand?________

B. For normalized numbers:

(a) What is the smallest value� of the exponent after biasing?________

(b) What is the largest value� of the exponent after biasing?________

(c) What is the largest value
 of the significand?________

Page 3 of 11

Part II

Fill in the blank entries in the following table giving the encodings for some interesting numbers.

Description �
 � Binary Encoding

Zero � � 0 0000 0000000

Smallest Positive (nonzero)

Largest denormalized

Smallest positive normalized

Page 4 of 11

Problem 3. (4 points):

Consider the following C functions and assembly code:

int fun4(int *ap, int *bp)
{

int a = *ap;
int b = *bp;
return a+b;

}

int fun5(int *ap, int *bp)
{

int b = *bp;
*bp += *ap;
return b;

}

int fun6(int *ap, int *bp)
{

int a = *ap;
*bp += *ap;
return a;

}

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
movl 12(%ebp),%eax
movl %ebp,%esp
movl (%edx),%edx
addl %edx,(%eax)
movl %edx,%eax
popl %ebp
ret

Which of the functions compiled into the assembly code shown? _________

Page 5 of 11

Problem 4. (8 points):
Consider the following four C and IA32 functions. Next to each of the four IA32 functions, write the name
of the C function that it implemnts. If the assembly routine doesn’t match any of the above functions, write
NONE. To save space, the startup code for each IA32 function is omitted:

pushl %ebp
movl %esp,%ebp

int winter(int foo[8][12],
int i, int j)

{
return foo[i][j];

}

int *spring(int foo[8][12],
int i, int j)

{
return foo[i];

}

int summer(int** foo,
int i, int j)

{
return foo[i][j];

}

int *fall(int** foo,
int i, int j)

{
return foo[i];

}

movl 8(%ebp),%edx
movl 12(%ebp),%eax
movl %ebp,%esp
popl %ebp
movl (%edx,%eax,4),%eax
ret

movl 8(%ebp),%ecx
movl 12(%ebp),%eax
movl 16(%ebp),%edx
movl (%ecx,%eax,4),%eax
movl %ebp,%esp
popl %ebp
movl (%eax,%edx,4),%eax
ret

movl 12(%ebp),%eax
leal (%eax,%eax,2),%eax
sall $4,%eax
addl 8(%ebp),%eax
movl %ebp,%esp
popl %ebp
ret

movl 8(%ebp),%eax
movl 12(%ebp),%edx
movl 16(%ebp),%ecx
sall $2,%ecx
leal (%edx,%edx,2),%edx
sall $4,%edx
addl %edx,%ecx
movl %ebp,%esp
popl %ebp
movl (%eax,%ecx),%eax
ret

Page 6 of 11

Problem 5. (6 points):

Consider the following data type definition:

typedef struct {
char c;
double d;
short s;
double *pd;
float f;
char *pc;

} struct1;

Using the template below (allowing a maximum of 40 bytes), indicate the allocation of data for a structure
of typestruct1. Mark off and label the areas for each individual element (there are 6 of them). Cross
hatch the parts that are allocated, but not used (to satisfy alignment).Clearly indicate the right hand (end)
boundary of the data structure with a vertical line.

Byte Offset - Assume IA32 Windows alignment conventions
0 4 8 12 16 20 24 28 32 36

Byte Offset - Assume IA32 Linux alignment conventions
0 4 8 12 16 20 24 28 32 36

Page 7 of 11

Problem 6. (6 points):

Consider the following IA32 code for a procedure calledmystery:

mystery:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%edx
movl 16(%ebp),%eax
addl 8(%ebp),%edx
testl %edx,%edx
jle .L4

.L6:
incl %eax
decl %edx
testl %edx,%edx
jg .L6

.L4:
movl %ebp,%esp
popl %ebp
ret

Based on the assembly code, fill in the blanks below inmystery’s C source code. (Note: you may only
use symbolic variables from the source code in your expressions below - donot use register names.)

int mystery(int a, int b, int c) {
int x, y;

y = _____________;

for (____________; ____________; _____________) {

_____________;

}

return ___________;
}

Page 8 of 11

The next problem concerns the following C code:

/* copy string x to buf */
void foo(char *x) �

int buf[1];
strcpy((char *)buf, x);�

void callfoo() �
foo("abcdefghi");�

Here is the corresponding machine code on a Linux/x86 machine:

080484f4 <foo>:
080484f4: 55 pushl %ebp
080484f5: 89 e5 movl %esp,%ebp
080484f7: 83 ec 18 subl $0x18,%esp
080484fa: 8b 45 08 movl 0x8(%ebp),%eax
080484fd: 83 c4 f8 addl $0xfffffff8,%esp
08048500: 50 pushl %eax
08048501: 8d 45 fc leal 0xfffffffc(%ebp),%eax
08048504: 50 pushl %eax
08048505: e8 ba fe ff ff call 80483c4 <strcpy>
0804850a: 89 ec movl %ebp,%esp
0804850c: 5d popl %ebp
0804850d: c3 ret

08048510 <callfoo>:
08048510: 55 pushl %ebp
08048511: 89 e5 movl %esp,%ebp
08048513: 83 ec 08 subl $0x8,%esp
08048516: 83 c4 f4 addl $0xfffffff4,%esp
08048519: 68 9c 85 04 08 pushl $0x804859c # push string address
0804851e: e8 d1 ff ff ff call 80484f4 <foo>
08048523: 89 ec movl %ebp,%esp
08048525: 5d popl %ebp
08048526: c3 ret

Page 9 of 11

Problem 7. (8 points):
This problem tests your understanding of the stack discipline and byte ordering. Here are some notes to help you work
the problem:

� strcpy(char *dst, char *src) copies the string at addresssrc (including the terminating ’\0’
character) to addressdst. It doesnot check the size of the destination buffer.

� Recall that Linux/x86 machines are Little Endian.
� You will need to know the hex values of the following characters:

Character Hex value Character Hex value

’a’ 0x61 ’f’ 0x66
’b’ 0x62 ’g’ 0x67
’c’ 0x63 ’h’ 0x68
’d’ 0x64 ’i’ 0x69
’e’ 0x65 ’\0’ 0x00

Now consider what happens on a Linux/x86 machine whencallfoo callsfoowith the input string “abcdefghi”.

A. List the contents of the following memory locations immediately afterstrcpy returns tofoo. Each answer
should be an unsigned 4-byte integer expressed as 8 hex digits.

buf[0] = 0x____________________

buf[1] = 0x____________________

buf[2] = 0x____________________

B. Immediatelybefore the ret instruction at address0x0804850d executes, what is the value of the frame
pointer register%ebp?

%ebp = 0x____________________

C. Immediatelyafter theret instruction at address0x0804850d executes, what is the value of the program
counter register%eip?

%eip = 0x____________________

Page 10 of 11

Problem 8. (4 points):
Consider the following fragment of IA32 code taken directlyfrom the C standard library:

0x400446e3: call 0x400446e8
0x400446e8: popl %eax

After thepopl instruction completes, what hex value does register%eax contain?

Page 11 of 11

