

Bits, Bytes and Integers

14-513/18-613: Introduction to Computer Systems 2nd and ^{3rd} Lectures, May. 20-21, 2020

Announcements

- CMU Computing and Linux Boot Camp Monday evening during regular class time
 - A Quick Start Guide put together by your hard-working TAs has been posted to Piazza and the course Web site to help you get started until then.

Autolab has been created, but I am still configuring it.

- You don't need it to start lab 0, which is posted to the Web site
- It will be available in plenty of time to turn in lab 0 and for the rest of the labs thereafter.

Reminder: I've got no control over the waitlist

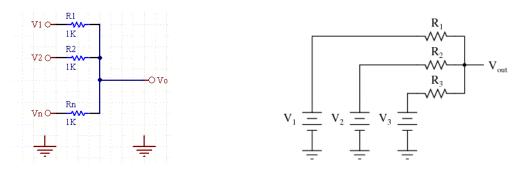
- I've asked the departments and programs to let everyone in
- I've let the departments and programs know that we have enough TA applicants to hire enough great TAs to fully support the course
- In the summer, the departments have to work through each student's circumstance one-by-one to do the add. It can take time. A lot of time.

Analog Computers

Before digital computers there were analog computers.

Consider a couple of simple analog computers:

- A simple circuit can allow one to adjust voltages using variable resistors and measure the output using a volt meter:
- A simple network of adjustable parallel resistors can allow one to find the average of the inputs.



https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml

> https://www.quora.com/What-is-the-most-basic-voltage-adder-circuitwithout-a-transistor-op-amp-and-any-external-supply

The Challenge of Analog Computers

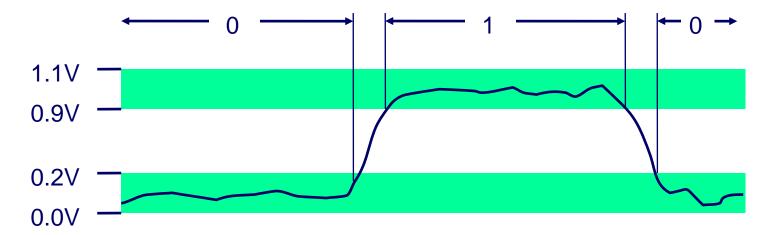
All components suffer from tolerances, and noise

- Components aren't manufacturer exactly
- The performance of components varies with the environment and as they age
- Signals are attenuated and affected by resistance, inductance, capacitance, etc, as they travel through conductors
- Energy is lost during storage
- Conductors act as antennas and collect noise

These properties mean that nothing is represented the same way over time and space and nothing can be communicated or duplicated or compared exactly

Needing Less Accuracy, Precision is Better

- We don't try to measure exactly
 - We just ask, is it high enough to be "On", or
 - Is it low enough to be "Off".
- We have two states, so we have a binary, or 2-ary, system.
 - We represent these states as 0 and 1
- Now we can easily interpret, communicate, and duplicate signals well enough to know what they mean.



Binary Representation

By encoding/interpreting sets of bits in various ways, we can represent different things:

- Operations to be executed by the processor
- Numbers
- Enumerable things, such as text characters
- As long as we can assign it to a discrete number, we can represent it in binary

Binary Representation: Simple Numbers

- Binary representation leads to a simple binary, i.e. base-2, numbering system
 - 0 represents 0
 - 1 represents 1
 - Each "place" represents a power of two, exactly as each place in our usual "base 10", 10-ary numbering system represents a power of 10

Binary Representation: Simple Numbers

- For example, we can count in binary, a base-2 numbering system
 - 000, 001, 010, 011, 100, 101, 110, 111, ...
 - $000 = 0^{2^{2}} + 0^{2^{1}} + 0^{2^{1}} = 0$ (in decimal)
 - $001 = 0^{*}2^{2} + 0^{*}2^{1} + 1^{*}2^{0} = 1$ (in decimal)
 - $010 = 0^{*}2^{2} + 1^{*}2^{1} + 0^{*}2^{0} = 2$ (in decimal)
 - $011 = 0^{2^{2}} + 1^{2^{1}} + 1^{2^{0}} = 3$ (in decimal)
 - Etc.

For reference, consider some base-10 examples:

- $000 = 0*10^2 + 0*10^{1} + 0*10^{0}$
- $001 = 0*10^2 + 0*10^{1} + 1*10^{0}$
- $357 = 3*10^2 + 5*10^1 + 7*2^0$

Binary Representation: ASCII Table

Dec HxOct Char	Dec H	lx Oct	Html	Chr	Dec	Hx C)ct I	Html	Chr	Dec	Hx	Oct	Html Cl	hr
0 0 000 NUL (null)	32 20	0 040	∉ #32;	Space	64	40 1	00 (∝#64;	0	96	60	140	`	1
1 1 001 SOH (start of heading)	33 21	1 041	∉#33;	1	65	41 1	01 (∝#65;	A	97	61	141	 <i>€</i> #97;	a
2 2 002 STX (start of text)	34 22	2 042	 <i>∉</i> 34;	"	66	42 1	02 (∝#66;	В	98	62	142	b	b
3 3 003 ETX (end of text)			 ∉35;		67	43 1	03 (∉#67;	С				«#99;	С
4 4 004 EOT (end of transmission			 ∉36;					∝#68;					≪#100;	
5 5 005 ENQ (enquiry)			∉ #37;					∉#69;	_				e	
6 6 006 ACK (acknowledge)			 ∉38;					⊊#70;					f	
7 7 007 BEL (bell)			 ∉39;		1.1			∝#71;	-				«#103;	
8 8 010 <mark>BS</mark> (backspace)			 <i>‱#</i> 40;					€#72;					«#104;	
9 9 011 TAB (horizontal tab))					∉ #73;					i	
10 A 012 LF (NL line feed, new			*					¢#74;					j	
11 B 013 VT (vertical tab)			«#43;					∉ #75;					k	
12 C 014 FF (NP form feed, new	F-9-4		«#44;					¢#76;					<i>&#</i> 108;	
13 D 015 CR (carriage return)			«#45;			_		G#77;					m	
14 E 016 S0 (shift out)			«#46;					∉ #78;					n	
15 F 017 SI (shift in)			«#47;					∉ #79;					o	
16 10 020 DLE (data link escape)			«#48;					¢#80;					p	-
17 11 021 DC1 (device control 1)			«#49;					Q ″°°	-				∉#113;	
18 12 022 DC2 (device control 2)			«#50;					∉#82;					«#114;	
19 13 023 DC3 (device control 3)			3					≪#83;					s	
20 14 024 DC4 (device control 4)			4					«#84;					t	
21 15 025 NAK (negative acknowled			∝#53; ∝#54;					∝#85; ∝#86;					u	
22 16 026 SYN (synchronous idle)	1		" 7					∝#oo; ∝#87;					v	
23 17 027 ETB (end of trans. bloc 24 18 030 CAN (cancel)			«#33; «#56;					∝#0/; X					w x	
			«#30; «#57;					∝#00; «#89;					x y	
25 19 031 EM (end of medium) 26 1A 032 SUB (substitute)			«#57; «#58;					∝#09; «#90;	_				«#121; «#122;	_
27 1B 033 ESC (escape)			∝#30; «#59;					∝#90; [«#122; «#123;	
28 1C 034 FS (file separator)			«#60;					∝#91; «#92;	-				«#123; «#124;	
29 1D 035 GS (group separator)	1		=					∝#93; «#93;					«#125;	
30 1E 036 RS (record separator)			>					∝#94;	-				~	
31 1F 037 US (unit separator)			«#63;					∝#95;					«#127;	
or in co. on (unit separator)	1 00 01			-	50	·· ·			_				upTable:	

Source:	www.LookupTables.com
---------	----------------------

- 0 (decimal) = 000 (binary)
- 1 (decimal) = 001 (binary)
- 2 (decimal) = 010 (binary)

Etc.

Encoding Byte Values

 Bits are very small. It helps to consider groups of them, e.g. Bytes

A Byte = 8 bits

- Binary 00000002 to 11111112
 - Decimal: 0₁₀ to 255₁₀

Hexadecimal and Octal

- Writing out numbers in binary takes too many digits
- We want a way to represent numbers more densely such that fewer digits are required
 - But also such that it is easy to get at the bits that we want

Any power-of-two base provides this property

- Octal, e.g. base-8, and Decimal, e.g. base-16 are the closest to our familiar base-10.
- Each has been used by "computer people" over time
- Hexadecimal is often preferred because it is denser.

Hexadecimal

Hexadecimal 00₁₆ to FF₁₆

- Base 16 number representation
- Use characters '0' to '9' and 'A' to 'F'

Consider 1A2B in Hexadecimal:

•
$$1*16^3$$
 + $A*16^2$ + $2*16^1$ + $B*16^0$

• $1*16^3 + 10*16^2 + 2*16^1 + 11*16^0 = 6699$ (decimal)

 The C Language prefixes hexadecimal numbers with "0x" so they aren't confused with decimal numbers

B

6

- Write 452372_{16} in 0011 1011 0110 1101
 - 0xFA1D37B 3
 - 0xfa1d37b

	0 1 2 3 4 5 6 7 8 9		Eimal Binary 0000
	He	0e	BIII
	0	0	0000
	1	1	0001
	2	2	0010
	З	З	0011
	4	4	0100
	5	5	0101
	6	0 1 2 3 4 5 6 7 8 9	0110
	7	7	0111
	8	8	1000
	9	9	1001
١	Α	10	1010
,	В	11	1011
	B C D	12 13 14	1100
	D	13	1101
	Ε	14	1110
	F	15	1111

Hexadecimal To Binary

- It is straight-forward to convert a hexadecimal number to binary:
 - Groups of 4 digits represent 16 possibilities, 0-15, i.e. hexadeximal 0-F
- Group the hex digits into groups of 4
 - Start on the left side!
 - If there aren't enough digits, leading 0s can be added on the left, but not on the right.
 - Convert each group of 4 bits into the corresponding hex digit.
 - The concatenation of all of the hex digits is the hex number, because each hex digit represents the same thing as the 4 bits it represents.
- Converting from hex to binary is the reverse process.

Common Data Types In the C Language

- Because resources are finite, a fixed amount of memory is usually allocated to data types, including numbers.
 - This amount of memory limits their range and/or precision.
 - We'll talk about that soon
- The table below shows some examples for the C programming Language

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

A&B = 1 when both A=1 and B=1

Not

~A = 1 when A=0

$$\frac{| 0 1}{0 0 1}$$

$$\frac{| 0 1}{1 1 1}$$
Exclusive-Or (Xor)
$$A^{B} = 1 \text{ when either A=1 or B=1, but not both}$$

$$\frac{| 0 1 1}{0 0 1}$$

• $\Delta | B = 1$ when either $\Delta = 1$ or B = 1

General Boolean Algebras

Operate on Bit Vectors

Operations applied bitwise

	01101001	01101001	01101001	
&	01010101	01010101	<u>^ 01010101</u>	<u>~ 01010101</u>
	01000001	01111101	00111100	10101010

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- a_i = 1 if j ∈ A
 - 01101001 { 0, 3, 5, 6 }
 - 7<u>65</u>4<u>3</u>210
 - 01010101 { 0, 2, 4, 6 }
 - 7<u>6</u>5<u>4</u>3<u>2</u>10

Operations

{0,6} **■** & Intersection 01000001 01111101 $\{0, 2, 3, 4, 5, 6\}$ Union Δ Symmetric difference 00111100 { 2, 3, 4, 5 } $\{1, 3, 5, 7\}$ Complement 10101010 \sim

Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 →
- ∼0x00 →
- 0x69 & 0x55 →

Ox69 | Ox55 →

4 0 1 2 3 4	t De	cimal Binary 0000
0	0	0000
1	0 1 2 3	0001
2	2	0010
3	3	0011
		0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

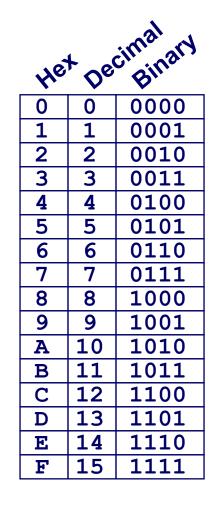
Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- \sim 0x41 \rightarrow 0xBE
 - ~0100 0001₂ \rightarrow 1011 1110₂
- $\sim 0x00 \rightarrow 0xFF$
 - $\sim 0000\ 0000_2 \rightarrow 1111\ 1111_2$
- $0x69 \& 0x55 \rightarrow 0x41$
 - 0110 1001₂ & 0101 0101₂ \rightarrow 0100 0001₂
- 0x69 | 0x55 → 0x7D
 - 0110 1001₂ | 0101 0101₂ \rightarrow 0111 1101₂



Contrast: Logic Operations in C

Contrast to Bit-Level Operators

- Logic Operations: &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- $!0x41 \rightarrow 0x00$
- $!0x00 \rightarrow 0x01$
- !!0x41→ 0x01
- $0x69 \&\& 0x55 \rightarrow 0x01$
- $0x69 \mid \mid 0x55 \rightarrow 0x01$
- p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)... Super common C programming pitfall!

Shift Operations

Left Shift: x << y</p>

- Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right

Right Shift: x >> y

- Shift bit-vector x right y positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0's on left
- Arithmetic shift
 - Replicate most significant bit on left

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

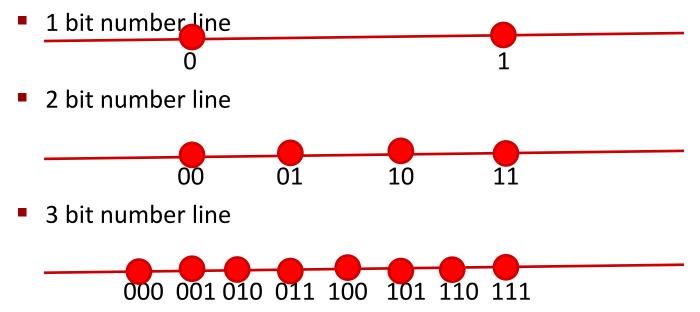
Argument x	<mark>01100010</mark>
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 011000
Arith. >> 2	<i>00</i> 011000

Argument x	10100010
<< 3	00010000
Log. >> 2	<i>00</i> 101000
Arith. >> 2	11 101000

Binary Number Lines

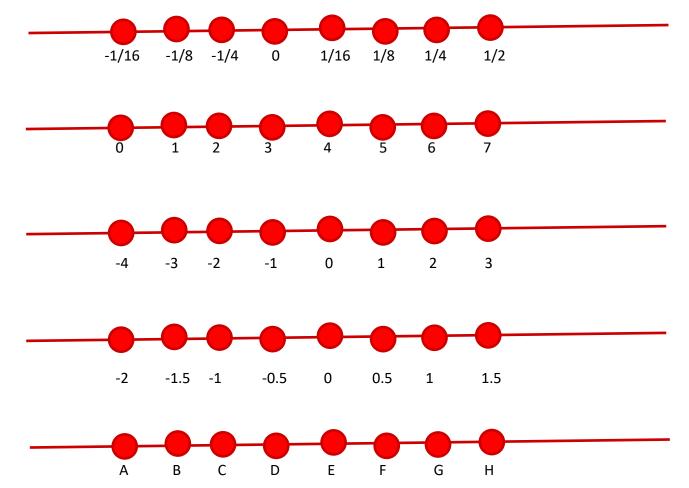
- In binary, the number of bits in the data type size determines the number of points on the number line.
 - We can assign the points any meaning we'd like

Consider the following examples:



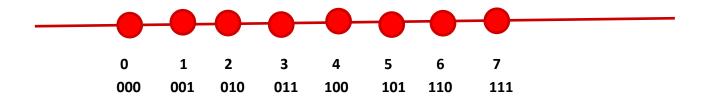
Some Purely Imaginary Examples

3 bit number line



Overflow

Let's consider a simple 3 digit number line:



What happens if we add 1 to 7?

In other words, what happens if we add 1 to 111?

111+001=1000

- But, we only get 3 bits so we lose the leading-1.
- This is called overflow

The result is 000

Modulus Arithmetic

• Let's explore this idea of overflow some more

- $111 + 001 = 1\ 000 = 000$
- $111 + 010 = 1\ 001 = 001$
- -111 + 011 = 1010 = 010
- 111 + 100 = 1011 = 011
- ...
- 111 + 110 = 1 101 = 101
- 111 + 111 = 1 110 = 110

So, arithmetic "wraps around" when it gets "too positive"

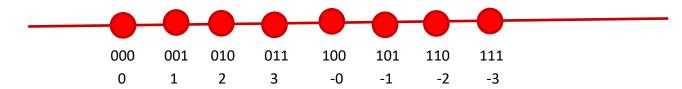
Unsigned and Non-Negative Integers

- We'll use the term "ints" to mean the finite set of integer numbers that we can represent on a number line enumerated by some fixed number of bits, i.e. bit width.
- We normally represent unsigned and non-negative int using simple binary as we have already discussed
 - An "unsigned" int is any int on a number line, e.g. of a data type, that doesn't contain any negative numbers
 - A non-negative number is a number greater than or equal to (>=) 0 on a number line, e.g. of a data type, that does contain negative numbers

How represent negative Numbers?

• We could use the leading bit as a *sign bit*:

- 0 means non-negative
- 1 means negative



This has some benefits

- It lets us represent negative and non-negative numbers
- 0 represents 0

It also has some drawbacks

- There is a -0, which is the same as 0, except that it is different
- How to add such numbers 1 + -1 should equal 0
 - But, by simple math, 001 + 101 = 110, which is -2?

A Magic Trick!

Let's just start with three ideas:

- 1 should be represented as 1
- -1 + 1 = 0
- We want addition to work in the familiar way, with simple rules.

We want a situation where "-1" + 1 = 0

Consider a 3 bit number:

- 001 + "-1" = 0
- 001 + 111 = 0
 - Remember 001 + 111 = 1 000, and the leading one is lost to overflow.

"-1" = 111

Yep!

Negative Numbers

- Well, if 111 is -1, what is -2?
 - **-1** 1
 - 111 001 = 110

Does that really work?

- If it does -2 + 2 = 0
- 110 + 010 = 1000 = 000
- -2 + 5 should be 3, right?
 - -110 + 101 = 1011 = 011

In general

■ -*x* = -1 - *x*

Finding –x the easy way

- Given a non-negative number in binary, e.g. 5, represented with a fixed bit width, e.g. 4
 - 0101

We can find its negative by flipping each bit and adding 1

- 0101 This is 5
- I010 This is the "ones complement of 5", e.g. 5 with bits flipped
- 1011 This is the "twos complement of 5", e.g. 5 with the bits flipped and 1 added
- 0101 + 1011 = 1 0000 = 0000

Because of the fixed with, the "two's complement" of a number can be used as its negative.

Why Does This Work?

Consider any number and its complement:

- 0101
- **1010**
- They are called complements because complementary bits are set. As a result, if they are added, all bits are necessarily set:
 - 0101 + 1010 = 1111
- Adding 1 to the sum of a number and its complement necessarily results in a 0 due to overflow
 - (0101 + 1010) + 1 = 1111 + 1 = 10000 = 0000
- And if x + y = 0, y must equal -x

So if x + TwosComplement(x) + 1 = 0 Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Why Does This Work? Cont.

- If x + y = 0
 - y must equal –x
- So if x + (TwosComplement(x) + 1) = 0
 - TwosComplement(x) + 1 must equal –x

Another way of looking at it:

- if x + (TwosComplement(x) + 1) = 0
- x + TwosComplement(x) = -1
- x = -1 TwosComplement(x)
- -x = 1 + TwosComplement(x)

Two-complement Encoding Example (Cont.)

x =	15213:	0011	1011	011	01101
у =	-15213:	1100	0100	100	10011
Weight	15213			-1521	.3
1	1	1		1	1
2	0	0		1	2
4	1	4		0	0
8	1	8		0	0
16	0	0		1	16
32	1	32		0	0
64	1	64		0	0
128	0	0		1	128
256	1	256		0	0
512	1	512		0	0
1024	0	0		1	1024
2048	1	2048		0	0
4096	1	4096		0	0
8192	1	8192		0	0
16384	0	0		1	16384
-32768	0	0		1	-32768
Sum		15213			-15213

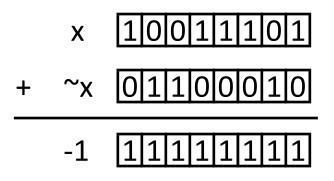
Negation: Complement & Increment

Negate through complement and increase

x + 1 = -x

Example

Observation: ~x + x == 1111...111 == -1



x = 15213

	Decimal	Не	X	Bina	iry
x	15213	3B	6D	00111011	01101101
~x	-15214	C4	92	11000100	10010010
~x+1	-15213	C4	93	11000100	10010011
У	-15213	C4	93	11000100	10010011

Complement & Increment Examples

x = **0**

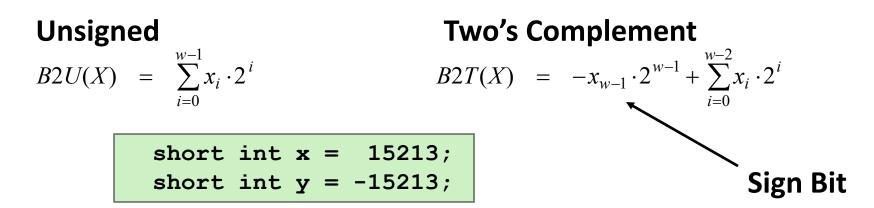
	Decimal	Hex	Binary
0	0	00 00	0000000 0000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	0000000 00000000

x = Tmin (The most negative two's complement number)

	Decimal	Hex	Binary
x	-32768	80 00	1000000 0000000
~x	32767	7F FF	01111111 11111111
~x+1	-32768	80 00	1000000 0000000

Canonical counter example

Encoding Integers: Dense Form



C does not mandate using two's complement

But, most machines do, and we will assume so

C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative

Numeric Ranges

- Unsigned Values
 - UMin = 0
 000...0
 - $UMax = 2^w 1$

111...1

Two's Complement Values

- $TMin = -2^{w-1}$ 100...0
- $TMax = 2^{w-1} 1$

011...1

Minus 1

111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	1000000 0000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	0000000 0000000

Values for Different Word Sizes

	W						
	8	16	32	64			
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615			
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807			
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808			

Observations

- ITMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1
- Question: abs(TMin)?

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

X	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

• \Rightarrow Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

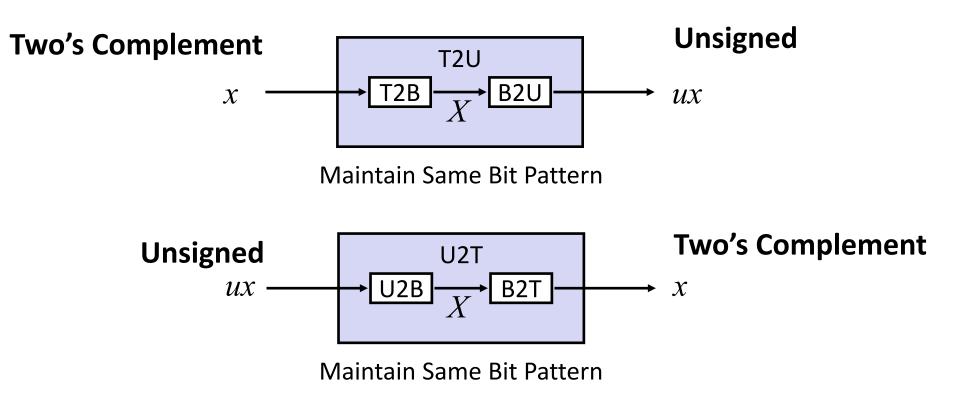
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Mapping Between Signed & Unsigned

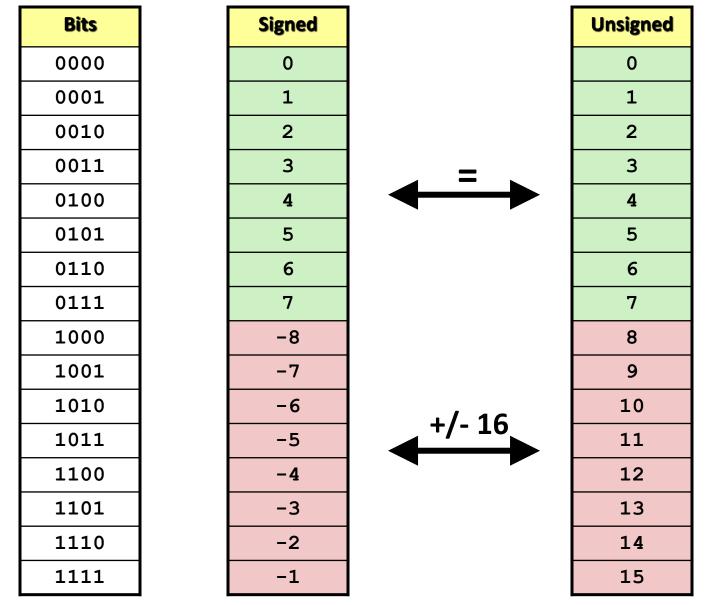


Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

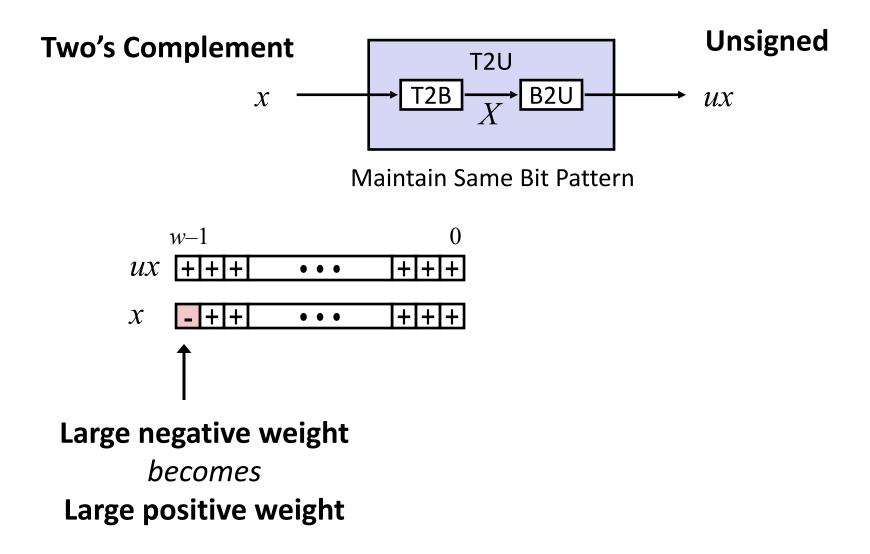
Mapping Signed ↔ Unsigned

Bits	Signed		Unsigned
0000	0		0
0001	1		1
0010	2		2
0011	3		3
0100	4		4
0101	5	→T2U→	5
0110	6		6
0111	7	← U2T ←	7
1000	-8		8
1001	-7		9
1010	-6		10
1011	-5		11
1100	-4		12
1101	-3		13
1110	-2		14
1111	-1		15

Mapping Signed ↔ Unsigned

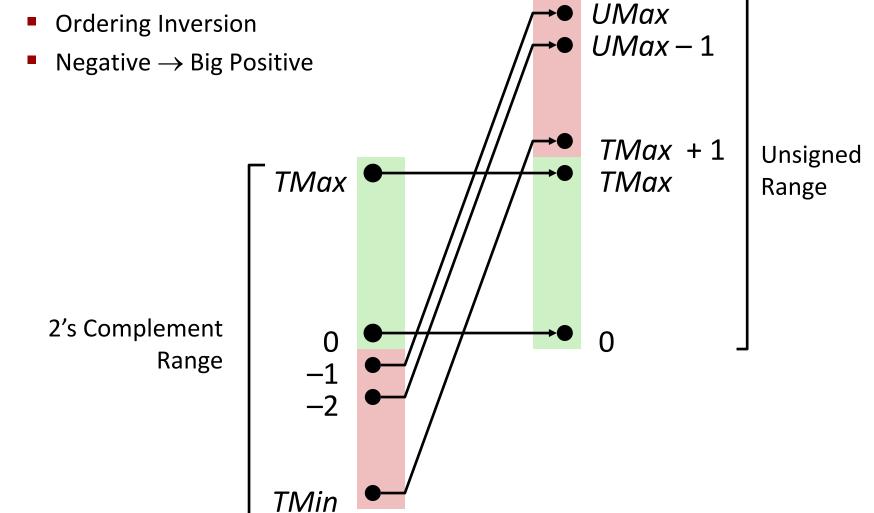


Relation between Signed & Unsigned



Conversion Visualized

■ 2's Comp. → Unsigned



Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

OU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty; unsigned ux, uy; tx = (int) ux; uy = (unsigned) ty;

- Implicit casting also occurs via assignments and procedure calls
 - tx = ux; int fun(unsigned u); uy = ty; uy = fun(tx);

Casting Surprises

Expression Evaluation

If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned

- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Summary

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting

Expanding, truncating

- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Sign Extension

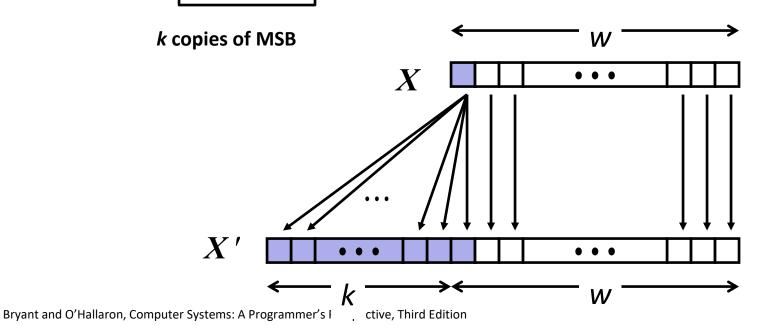
Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

• Make *k* copies of sign bit:

•
$$X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$$



Sign Extension: Simple Example



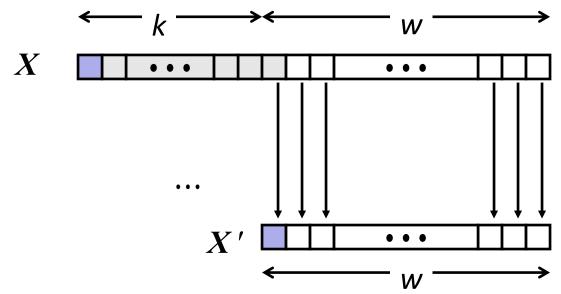
Truncation

Task:

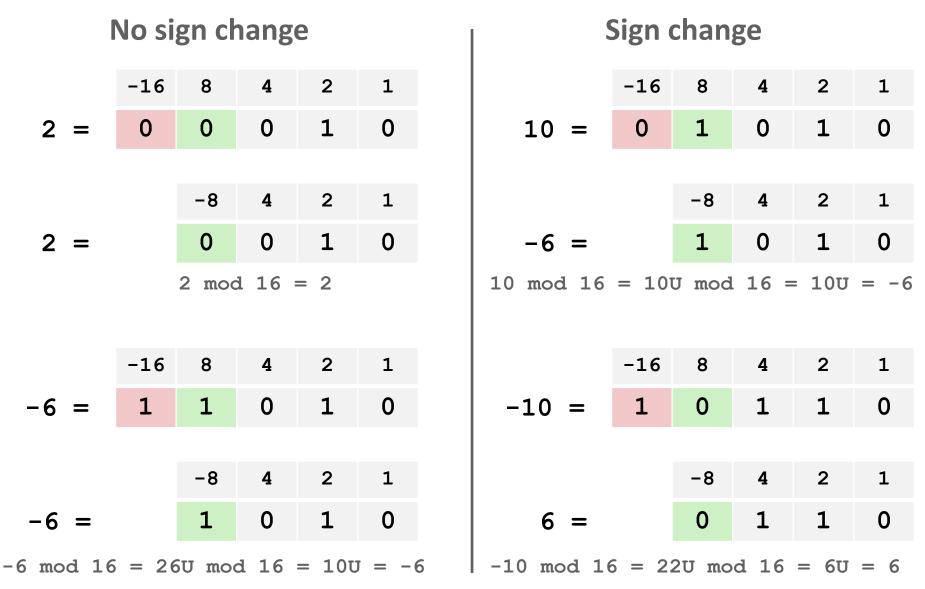
- Given k+w-bit signed or unsigned integer X
- Convert it to w-bit integer X' with same value for "small enough" X

Rule:

- Drop top *k* bits:
- $X' = x_{w-1}, x_{w-2}, ..., x_0$



Truncation: Simple Example



Summary: Expanding, Truncating: Basic Rules

Expanding (e.g., short int to int)

- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result

Truncating (e.g., unsigned to unsigned short)

- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small (in magnitude) numbers yields expected behavior

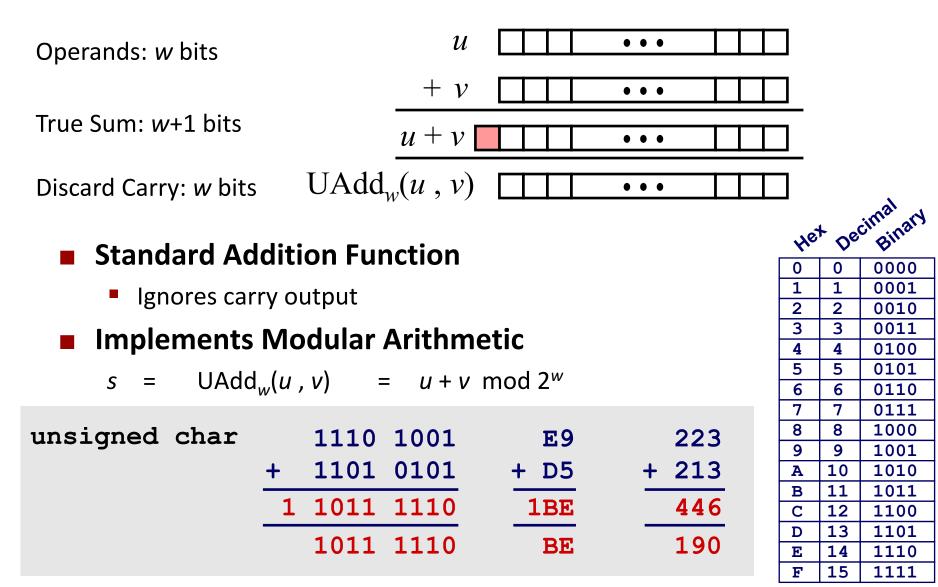
Summary of Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

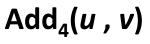
Unsigned Addition

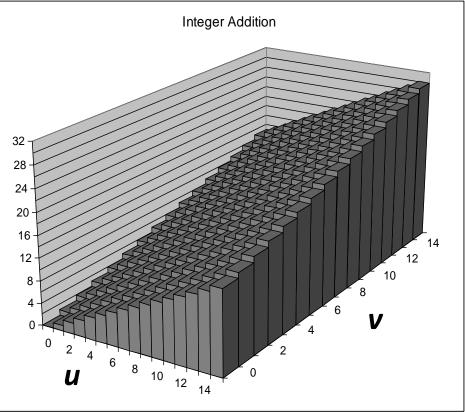


Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers *u*, *v*
- Compute true sum
 Add₄(*u*, *v*)
- Values increase linearly with *u* and *v*
- Forms planar surface

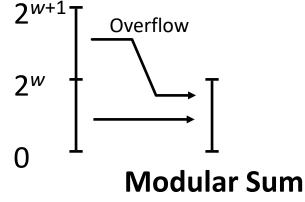


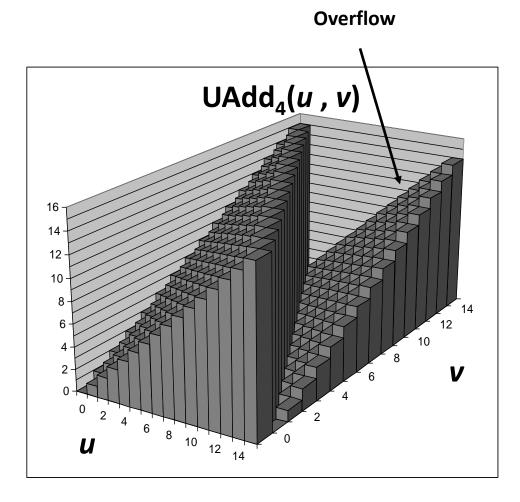


Visualizing Unsigned Addition

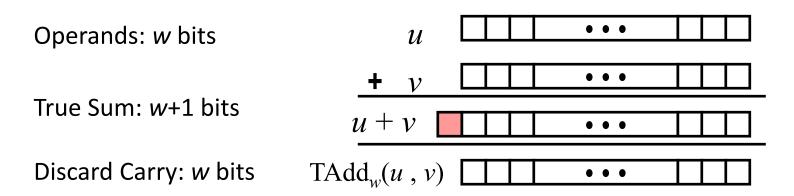
Wraps Around

- If true sum $\geq 2^{w}$
- At most once





Two's Complement Addition



TAdd and UAdd have Identical Bit-Level Behavior

 Signed vs. unsigned addition in 	C:				
int s, t, u, v;					
s = (int) ((unsigned) u	+	(unsig	gned) v	·);	
t = u + v					
 Will give s == t 		1110	1001	E9	-23
+	-	1101	0101	+ D5	+ -43
—	1	1011	1110	1BE	-66

1011

10

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

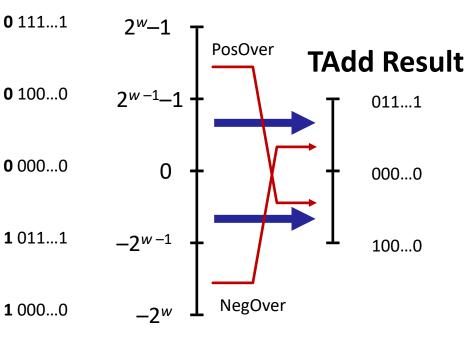
-66

BE

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer



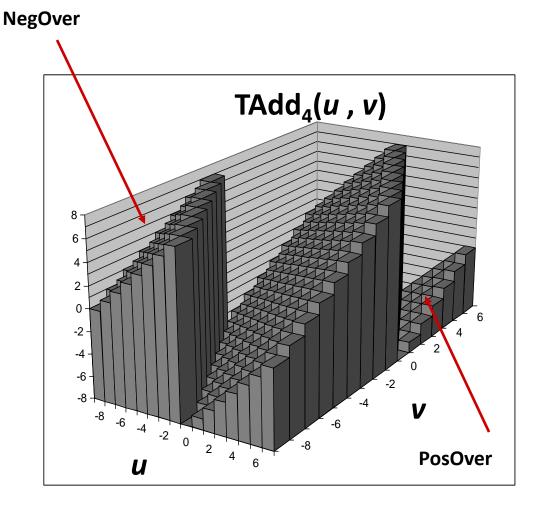
Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

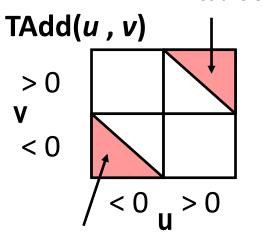
- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum < -2^{w-1}
 - Becomes positive
 - At most once



Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer



Negative Overflow

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Multiplication

Goal: Computing Product of *w***-bit numbers** *x*, *y*

Either signed or unsigned

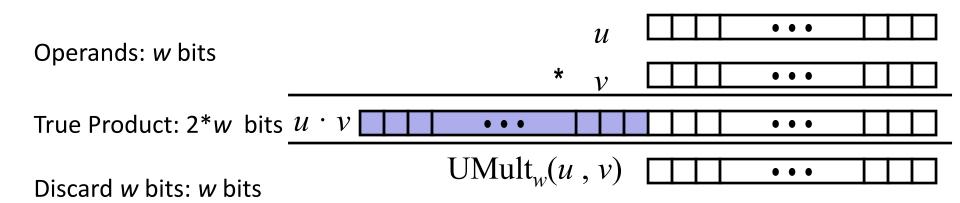
But, exact results can be bigger than w bits

- Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
- Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2}+2^{w-1}$
- Two's complement max (positive): Up to 2w bits, but only for (TMin_w)²
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$

So, maintaining exact results...

- would need to keep expanding word size with each product computed
- is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C



Standard Multiplication Function

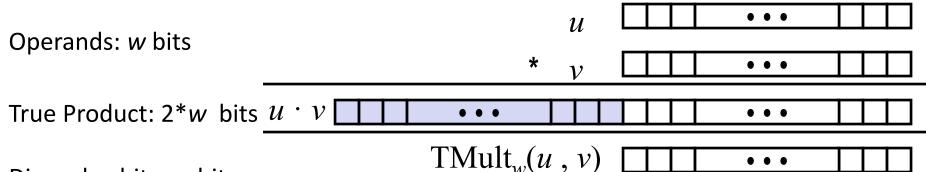
Ignores high order w bits

Implements Modular Arithmetic

 $UMult_w(u, v) = u \cdot v \mod 2^w$

		1110	1001		E9		233
*		1101	0101	*	D5	*	213
1100	0001	1101	1101	С	1DD		49629
		1101	1101		DD		221

Signed Multiplication in C



Discard w bits: w bits

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

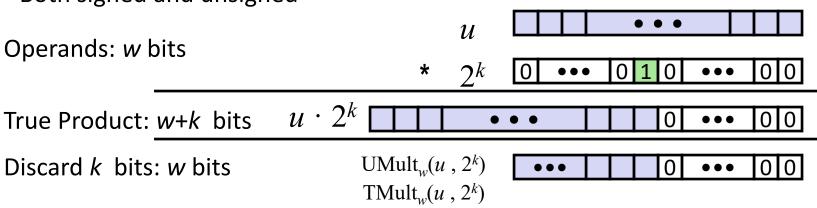
		1110	1001		E9		-23
*		1101	0101	*	D5	*	-43
0000	0011	1101	1101	()3DD		989
		1101	1101		DD		-35

k

Power-of-2 Multiply with Shift

Operation

- u << k gives u * 2^k
- Both signed and unsigned

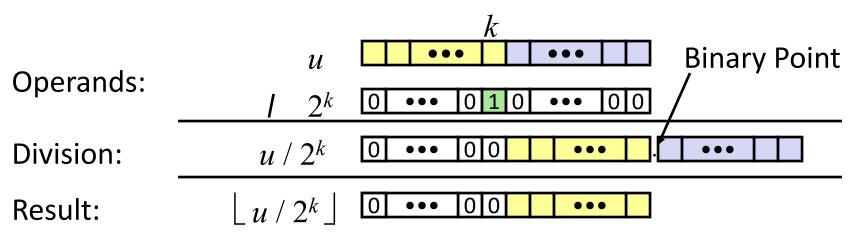


Examples

- u << 3 == u * 8
- $(u \ll 5) (u \ll 3) == u \ast 24$
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

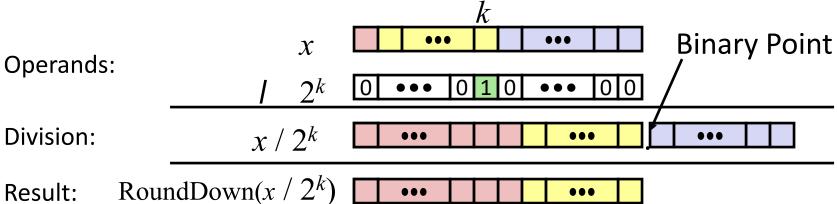


	Division	ision Computed H		Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $\mathbf{x} \gg \mathbf{k}$ gives $\lfloor \mathbf{x} / 2^k \rfloor$
- Uses arithmetic shift
- Rounds wrong direction when x < 0



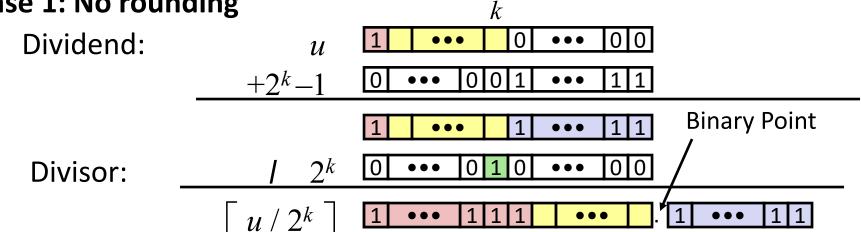
	Division	Computed	Hex	Binary
x	-15213	-15213	C4 93	11000100 10010011
x >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
x >> 4	-950.8125	-951	FC 49	1111 100 01001001
x >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want $\begin{bmatrix} \mathbf{x} \\ \mathbf{z}^k \end{bmatrix}$ (Round Toward 0)
- Compute as $\lfloor (x+2^k-1) / 2^k \rfloor$
 - In C: (x + (1<<k)-1) >> k
 - Biases dividend toward 0

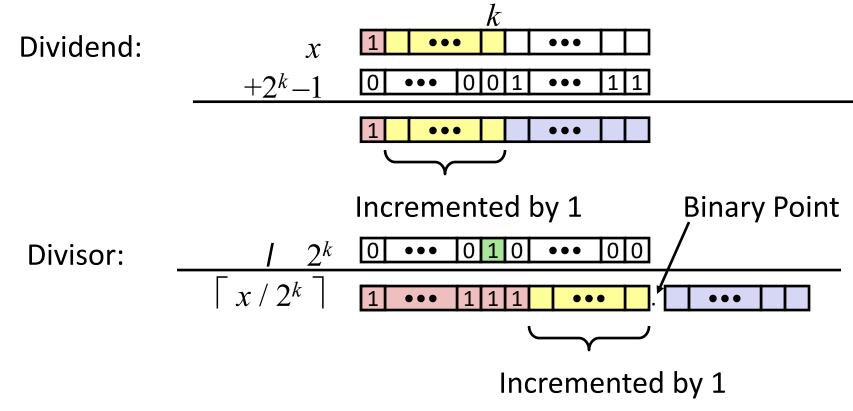
Case 1: No rounding



Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding



Biasing adds 1 to final result

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)