
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes and Integers
14-513/18-613: Introduction to Computer Systems
2nd and 3rd Lectures, May. 20-21, 2020

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements

 CMU Computing and Linux Boot Camp Monday evening during regular class
time

▪ A Quick Start Guide put together by your hard-working TAs has been posted
to Piazza and the course Web site to help you get started until then.

 Autolab has been created, but I am still configuring it.
▪ You don’t need it to start lab 0, which is posted to the Web site

▪ It will be available in plenty of time to turn in lab 0 and for the rest of the
labs thereafter.

 Reminder: I’ve got no control over the waitlist

▪ I’ve asked the departments and programs to let everyone in

▪ I’ve let the departments and programs know that we have enough TA
applicants to hire enough great TAs to fully support the course

▪ In the summer, the departments have to work through each student’s
circumstance one-by-one to do the add. It can take time. A lot of time.

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analog Computers
 Before digital computers there were analog computers.

 Consider a couple of simple analog computers:
▪ A simple circuit can allow one to adjust voltages using variable

resistors and measure the output using a volt meter:

▪ A simple network of adjustable parallel resistors can allow one to
find the average of the inputs.

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-

Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-

without-a-transistor-op-amp-and-any-external-supply

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Challenge of Analog Computers

 All components suffer from tolerances, and noise
▪ Components aren’t manufacturer exactly

▪ The performance of components varies with the environment and
as they age

▪ Signals are attenuated and affected by resistance, inductance,
capacitance, etc, as they travel through conductors

▪ Energy is lost during storage

▪ Conductors act as antennas and collect noise

 These properties mean that nothing is represented the
same way over time and space and nothing can be
communicated or duplicated or compared exactly

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Needing Less Accuracy, Precision is Better
 We don’t try to measure exactly

▪ We just ask, is it high enough to be “On”, or

▪ Is it low enough to be “Off”.

 We have two states, so we have a binary, or 2-ary, system.

▪ We represent these states as 0 and 1

 Now we can easily interpret, communicate, and duplicate signals well enough to
know what they mean.

0.0V

0.2V

0.9V

1.1V

0 1 0

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Representation

 By encoding/interpreting sets of bits in various ways, we
can represent different things:
▪ Operations to be executed by the processor

▪ Numbers

▪ Enumerable things, such as text characters

 As long as we can assign it to a discrete number, we can
represent it in binary

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Representation:
Simple Numbers

 Binary representation leads to a simple binary, i.e. base-2,
numbering system
▪ 0 represents 0

▪ 1 represents 1

▪ Each “place” represents a power of two, exactly as each place in
our usual “base 10”, 10-ary numbering system represents a power
of 10

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Representation:
Simple Numbers
 For example, we can count in binary, a base-2 numbering

system
▪ 000, 001, 010, 011, 100, 101, 110, 111, …

▪ 000 = 0*22 + 0*21 + 0*20 = 0 (in decimal)

▪ 001 = 0*22 + 0*21 + 1*20 = 1 (in decimal)

▪ 010 = 0*22 + 1*21 + 0*20 = 2 (in decimal)

▪ 011 = 0*22 + 1*21 + 1*20 = 3 (in decimal)

▪ Etc.

 For reference, consider some base-10 examples:
▪ 000 = 0*102 + 0*101 + 0*100

▪ 001 = 0*102 + 0*101 + 1*100

▪ 357 = 3*102 + 5*101 + 7*20

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Representation:
ASCII Table

 0 (decimal) = 000 (binary)

 1 (decimal) = 001 (binary)

 2 (decimal) = 010 (binary)

 Etc.

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values

 Bits are very small. It helps to consider
groups of them, e.g. Bytes

 A Byte = 8 bits
▪ Binary 000000002 to 111111112

▪ Decimal: 010 to 25510

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hexadecimal and Octal

 Writing out numbers in binary takes too many digits

 We want a way to represent numbers more densely such that
fewer digits are required
▪ But also such that it is easy to get at the bits that we want

 Any power-of-two base provides this property
▪ Octal, e.g. base-8, and Decimal, e.g. base-16 are the closest to our

familiar base-10.

▪ Each has been used by “computer people” over time

▪ Hexadecimal is often preferred because it is denser.

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hexadecimal

 Hexadecimal 0016 to FF16

▪ Base 16 number representation

▪ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Consider 1A2B in Hexadecimal:
▪ 1*163 + A*162 + 2*161 + B*160

▪ 1*163 + 10*162 + 2*161 + 11*160 = 6699 (decimal)

▪ The C Language prefixes hexadecimal numbers with “0x”
so they aren’t confused with decimal numbers

▪ Write FA1D37B16 in C as

▪ 0xFA1D37B

▪ 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15213: 0011 1011 0110 1101

3 B 6 D

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hexadecimal To Binary
▪ It is straight-forward to convert a hexadecimal number to binary:

▪ Groups of 4 digits represent 16 possibilities, 0-15, i.e. hexadeximal 0-F

▪ Group the hex digits into groups of 4

▪ Start on the left side!

– If there aren’t enough digits, leading 0s can be added on the left,
but not on the right.

▪ Convert each group of 4 bits into the corresponding hex digit.

▪ The concatenation of all of the hex digits is the hex number, because
each hex digit represents the same thing as the 4 bits it represents.

▪ Converting from hex to binary is the reverse process.

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15213: 0011 1011 0110 1101

3 B 6 D

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Data Types In the C Language

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

▪ Because resources are finite, a fixed amount of memory is usually allocated
to data types, including numbers.

▪ This amount of memory limits their range and/or precision.

– We’ll talk about that soon

▪ The table below shows some examples for the C programming Language

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra

 Developed by George Boole in 19th Century
▪ Algebraic representation of logic

▪ Encode “True” as 1 and “False” as 0

And

◼ A&B = 1 when both A=1 and B=1

Or

◼ A|B = 1 when either A=1 or B=1

Not

◼ ~A = 1 when A=0

Exclusive-Or (Xor)

◼ A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras

 Operate on Bit Vectors
▪ Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Representing & Manipulating Sets

 Representation
▪ Width w bit vector represents subsets of {0, …, w–1}

▪ aj = 1 if j ∈ A

▪ 01101001 { 0, 3, 5, 6 }

▪ 76543210

▪ 01010101 { 0, 2, 4, 6 }

▪ 76543210

 Operations
▪ & Intersection 01000001 { 0, 6 }

▪ | Union 01111101 { 0, 2, 3, 4, 5, 6 }

▪ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

▪ ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~0100 00012 → 1011 11102

▪ ~0x00 → 0xFF

▪ ~0000 00002 → 1111 11112

▪ 0x69 & 0x55 → 0x41

▪ 0110 10012 & 0101 01012 → 0100 00012

▪ 0x69 | 0x55 → 0x7D

▪ 0110 10012 | 0101 01012 → 0111 11012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C

 Contrast to Bit-Level Operators
▪ Logic Operations: &&, ||, !

▪ View 0 as “False”

▪ Anything nonzero as “True”

▪ Always return 0 or 1

▪ Early termination

 Examples (char data type)
▪ !0x41 → 0x00

▪ !0x00 → 0x01

▪ !!0x41→ 0x01

▪ 0x69 && 0x55 → 0x01

▪ 0x69 || 0x55 → 0x01

▪ p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
Super common C programming pitfall!

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations

 Left Shift: x << y

▪ Shift bit-vector x left y positions

– Throw away extra bits on left

▪ Fill with 0’s on right

 Right Shift: x >> y

▪ Shift bit-vector x right y positions

▪ Throw away extra bits on right

▪ Logical shift

▪ Fill with 0’s on left

▪ Arithmetic shift

▪ Replicate most significant bit on left

 Undefined Behavior
▪ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Number Lines
 In binary, the number of bits in the data type size

determines the number of points on the number line.
▪ We can assign the points any meaning we’d like

 Consider the following examples:
▪ 1 bit number line

0 1

▪ 2 bit number line

00 01 10 11

▪ 3 bit number line

000 001 010 011 100 101 110 111

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Purely Imaginary Examples

 3 bit number line

-1/16 -1/8 -1/4 0 1/16 1/8 1/4 1/2

0 1 2 3 4 5 6 7

-4 -3 -2 -1 0 1 2 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5

A B C D E F G H

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overflow

 Let’s consider a simple 3 digit number line:

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

 What happens if we add 1 to 7?
▪ In other words, what happens if we add 1 to 111?

 111+ 001 = 1 000
▪ But, we only get 3 bits – so we lose the leading-1.

▪ This is called overflow

 The result is 000

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modulus Arithmetic

 Let’s explore this idea of overflow some more
▪ 111 + 001 = 1 000 = 000

▪ 111 + 010 = 1 001 = 001

▪ 111 + 011 = 1 010 = 010

▪ 111 + 100 = 1 011 = 011

▪ …

▪ 111 + 110 = 1 101 = 101

▪ 111 + 111 = 1 110 = 110

 So, arithmetic “wraps around” when it gets “too positive”

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned and Non-Negative Integers

 We’ll use the term “ints” to mean the finite set of integer
numbers that we can represent on a number line
enumerated by some fixed number of bits, i.e. bit width.

 We normally represent unsigned and non-negative int
using simple binary as we have already discussed
▪ An “unsigned” int is any int on a number line, e.g. of a data type,

that doesn’t contain any negative numbers

▪ A non-negative number is a number greater than or equal to (>=) 0
on a number line, e.g. of a data type, that does contain negative
numbers

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How represent negative Numbers?
 We could use the leading bit as a sign bit:

▪ 0 means non-negative

▪ 1 means negative

000 001 010 011 100 101 110 111

0 1 2 3 -0 -1 -2 -3

 This has some benefits
▪ It lets us represent negative and non-negative numbers

▪ 0 represents 0

 It also has some drawbacks
▪ There is a -0, which is the same as 0, except that it is different

▪ How to add such numbers 1 + -1 should equal 0

▪ But, by simple math, 001 + 101 = 110, which is -2?

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Magic Trick!
 Let’s just start with three ideas:

▪ 1 should be represented as 1

▪ -1 + 1 = 0

▪ We want addition to work in the familiar way, with simple rules.

 We want a situation where “-1” + 1 = 0

 Consider a 3 bit number:
▪ 001 + “-1” = 0

▪ 001 + 111 = 0

▪ Remember 001 + 111 = 1 000, and the leading one is lost to
overflow.

 “-1” = 111
▪ Yep!

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Negative Numbers

 Well, if 111 is -1, what is -2?
▪ -1 - 1

▪ 111 – 001 = 110

 Does that really work?
▪ If it does -2 + 2 = 0

▪ 110 + 010 = 1 000 = 000

 -2 + 5 should be 3, right?
▪ 110 + 101 = 1 011 = 011

 In general
▪ -x = -1 - x

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finding –x the easy way

 Given a non-negative number in binary, e.g. 5, represented
with a fixed bit width, e.g. 4
▪ 0101

 We can find its negative by flipping each bit and adding 1
▪ 0101 This is 5

▪ 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped

▪ 1011 This is the “twos complement of 5”, e.g. 5 with the bits
flipped and 1 added

▪ 0101 + 1011 = 1 0000 = 0000

 Because of the fixed with, the “two’s complement” of a
number can be used as its negative.

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Does This Work?

 Consider any number and its complement:
▪ 0101

▪ 1010

 They are called complements because complementary
bits are set. As a result, if they are added, all bits are
necessarily set:
▪ 0101 + 1010 = 1111

 Adding 1 to the sum of a number and its complement
necessarily results in a 0 due to overflow
▪ (0101 + 1010) + 1 = 1111 + 1 = 1 0000 = 0000

 And if x + y = 0, y must equal –x
▪ So if x + TwosComplement(x) + 1 = 0

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Does This Work? Cont.

 If x + y = 0
▪ y must equal –x

 So if x + (TwosComplement(x) + 1) = 0
▪ TwosComplement(x) + 1 must equal –x

 Another way of looking at it:
▪ if x + (TwosComplement(x) + 1) = 0

▪ x + TwosComplement(x) = -1

▪ x = -1 - TwosComplement(x)

▪ -x = 1 + TwosComplement(x)

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement Encoding Example (Cont.)
x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight 15213 -15213

1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Negation: Complement & Increment

 Negate through complement and increase
~x + 1 == -x

 Example
▪ Observation: ~x + x == 1111…111 == -1

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

~x -15214 C4 92 11000100 10010010

~x+1 -15213 C4 93 11000100 10010011

y -15213 C4 93 11000100 10010011

x = 15213

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complement & Increment Examples

 Decimal Hex Binary
x -32768 80 00 10000000 00000000

~x 32767 7F FF 01111111 11111111

~x+1 -32768 80 00 10000000 00000000

x = Tmin (The most negative two’s complement number)

 Decimal Hex Binary
0 0 00 00 00000000 00000000

~0 -1 FF FF 11111111 11111111

~0+1 0 00 00 00000000 00000000

x = 0

Canonical counter example

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers: Dense Form

short int x = 15213;

short int y = -15213;

 C does not mandate using two’s complement
▪ But, most machines do, and we will assume so

 C short 2 bytes long

 Sign Bit
▪ For 2’s complement, most significant bit indicates sign

▪ 0 for nonnegative

▪ 1 for negative

B2T (X) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2

B2U(X) = xi 2
i

i=0

w−1



Unsigned Two’s Complement

Sign Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

y -15213 C4 93 11000100 10010011

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges
 Unsigned Values

▪ UMin = 0

000…0

▪ UMax = 2w – 1

111…1

 Two’s Complement Values

▪ TMin = –2w–1

100…0

▪ TMax = 2w–1 – 1

011…1

▪ Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Values for Different Word Sizes

 Observations
▪ |TMin | = TMax + 1

▪ Asymmetric range

▪ UMax = 2 * TMax + 1

▪ Question: abs(TMin)?

 W

 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
▪ #include <limits.h>

▪ Declares constants, e.g.,

▪ ULONG_MAX

▪ LONG_MAX

▪ LONG_MIN

▪ Values platform specific

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
 Equivalence

▪ Same encodings for nonnegative
values

 Uniqueness
▪ Every bit pattern represents

unique integer value

▪ Each representable integer has
unique bit encoding

  Can Invert Mappings
▪ U2B(x) = B2U-1(x)

▪ Bit pattern for unsigned
integer

▪ T2B(x) = B2T-1(x)

▪ Bit pattern for two’s comp
integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized

 2’s Comp. → Unsigned
▪ Ordering Inversion

▪ Negative → Big Positive

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C

 Constants
▪ By default are considered to be signed integers

▪ Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
▪ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

▪ Implicit casting also occurs via assignments and procedure calls

tx = ux; int fun(unsigned u);

uy = ty; uy = fun(tx);

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned

-1 -2 > signed

(unsigned) -1 -2 > unsigned

2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

▪ If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

▪ Including comparison operations <, >, ==, <=, >=

▪ Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1

2147483647U -2147483647-1

-1 -2

(unsigned)-1 -2

2147483647 2147483648U

2147483647 (int) 2147483648U

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed ↔ Unsigned: Basic Rules

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
▪ int is cast to unsigned!!

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension

 Task:
▪ Given w-bit signed integer x

▪ Convert it to w+k-bit integer with same value

 Rule:
▪ Make k copies of sign bit:

▪ X  = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation

 Task:
▪ Given k+w-bit signed or unsigned integer X

▪ Convert it to w-bit integer X’ with same value for “small enough” X

 Rule:
▪ Drop top k bits:

▪ X  = xw–1 , xw–2 ,…, x0

• • •

• • •X 
w

X • • • • • •

wk

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)
▪ Unsigned: zeros added

▪ Signed: sign extension

▪ Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
▪ Unsigned/signed: bits are truncated

▪ Result reinterpreted

▪ Unsigned: mod operation

▪ Signed: similar to mod

▪ For small (in magnitude) numbers yields expected behavior

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Addition

 Standard Addition Function
▪ Ignores carry output

 Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

223

+ 213

446

190

unsigned char

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition
▪ 4-bit integers u, v

▪ Compute true sum
Add4(u , v)

▪ Values increase linearly
with u and v

▪ Forms planar surface

Add4(u , v)

u

v

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around
▪ If true sum ≥ 2w

▪ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior
▪ Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

▪ Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

-23

+ -43

-66

-66

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TAdd Overflow

 Functionality
▪ True sum requires w+1

bits

▪ Drop off MSB

▪ Treat remaining bits as
2’s comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values
▪ 4-bit two’s comp.

▪ Range from -8 to +7

 Wraps Around

▪ If sum  2w–1

▪ Becomes negative

▪ At most once

▪ If sum < –2w–1

▪ Becomes positive

▪ At most once

TAdd4(u , v)

u

v

PosOver

NegOver

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Characterizing TAdd

 Functionality
▪ True sum requires w+1 bits

▪ Drop off MSB

▪ Treat remaining bits as 2’s
comp. integer

TAddw (u,v) =

u + v + 2
w−1

u + v  TMinw

u + v TMinw  u + v  TMaxw

u + v − 2
w−1

TMaxw  u + v









(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

2w

2w

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiplication

 Goal: Computing Product of w-bit numbers x, y
▪ Either signed or unsigned

 But, exact results can be bigger than w bits
▪ Unsigned: up to 2w bits

▪ Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

▪ Two’s complement min (negative): Up to 2w-1 bits

▪ Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

▪ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

▪ Result range: x * y ≤ (–2w–1) 2 = 22w–2

 So, maintaining exact results…
▪ would need to keep expanding word size with each product computed

▪ is done in software, if needed

▪ e.g., by “arbitrary precision” arithmetic packages

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

 Implements Modular Arithmetic
UMultw(u , v)= u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

1110 1001

* 1101 0101

1100 0001 1101 1101

1101 1101

E9

* D5

C1DD

DD

233

* 213

49629

221

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

▪ Some of which are different for signed
vs. unsigned multiplication

▪ Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

-23

* -43

989

-35

1110 1001

* 1101 0101

0000 0011 1101 1101

1101 1101

E9

* D5

03DD

DD

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-2 Multiply with Shift

 Operation
▪ u << k gives u * 2k

▪ Both signed and unsigned

 Examples
▪ u << 3 == u * 8

▪ (u << 5) – (u << 3)== u * 24

▪ Most machines shift and add faster than multiply

▪ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
▪ u >> k gives  u / 2k 

▪ Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Power-of-2 Divide with Shift

 Quotient of Signed by Power of 2
▪ x >> k gives  x / 2k 

▪ Uses arithmetic shift

▪ Rounds wrong direction when x < 0

0 0 1 0 0 0•••

x

2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary
x -15213 -15213 C4 93 11000100 10010011

x >> 1 -7606.5 -7607 E2 49 11100010 01001001

x >> 4 -950.8125 -951 FC 49 11111100 01001001

x >> 8 -59.4257813 -60 FF C4 11111111 11000100

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Power-of-2 Divide

 Quotient of Negative Number by Power of 2
▪ Want  x / 2k  (Round Toward 0)

▪ Compute as  (x+2k-1)/ 2k 

▪ In C: (x + (1<<k)-1) >> k

▪ Biases dividend toward 0

Case 1: No rounding

Divisor:

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k 

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Power-of-2 Divide (Cont.)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic: Basic Rules

 Addition:
▪ Unsigned/signed: Normal addition followed by truncate,

same operation on bit level

▪ Unsigned: addition mod 2w

▪ Mathematical addition + possible subtraction of 2w

▪ Signed: modified addition mod 2w (result in proper range)

▪ Mathematical addition + possible addition or subtraction of 2w

 Multiplication:
▪ Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level

▪ Unsigned: multiplication mod 2w

▪ Signed: modified multiplication mod 2w (result in proper range)

