
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes and Integers
14-513/18-613: Introduction to Computer Systems
2nd and 3rd Lectures,  May. 20-21, 2020



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements

 CMU Computing and Linux Boot Camp Monday evening during regular class 
time

▪ A Quick Start Guide put together by your hard-working TAs has been posted 
to Piazza and the course Web site to help you get started until then. 

 Autolab has been created, but I am still configuring it.
▪ You don’t need it to start lab 0, which is posted to the Web site

▪ It will be available in plenty of time to turn in lab 0 and for the rest of the 
labs thereafter. 

 Reminder: I’ve got no control over the waitlist

▪ I’ve asked the departments and programs to let everyone in

▪ I’ve let the departments and programs know that we have enough TA 
applicants to hire enough great TAs to fully support the course

▪ In the summer, the departments have to work through each student’s 
circumstance one-by-one to do the add. It can take time. A lot of time. 
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Analog Computers
 Before digital computers there were analog computers. 

 Consider a couple of simple analog computers:
▪ A simple circuit can allow one to adjust voltages using variable 

resistors and measure the output using a volt meter:

▪ A simple network of adjustable parallel resistors can allow one to 
find the average of the inputs. 

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-

Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-

without-a-transistor-op-amp-and-any-external-supply

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply
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The Challenge of Analog Computers

 All components suffer from tolerances, and noise
▪ Components aren’t manufacturer exactly

▪ The performance of components varies with the environment and 
as they age

▪ Signals are attenuated and affected by resistance, inductance, 
capacitance, etc, as they travel through conductors

▪ Energy is lost during storage

▪ Conductors act as antennas and collect noise

 These properties mean that nothing is represented the 
same way over time and space and nothing can be 
communicated or duplicated or compared exactly 
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Needing Less Accuracy, Precision is Better
 We don’t try to measure exactly

▪ We just ask, is it high enough to be “On”, or

▪ Is it low enough to be “Off”. 

 We have two states, so we have a binary, or 2-ary, system.

▪ We represent these states as 0 and 1

 Now we can easily interpret, communicate, and duplicate signals well enough to 
know what they mean. 

0.0V

0.2V

0.9V

1.1V

0 1 0
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Binary Representation

 By encoding/interpreting sets of bits in various ways, we 
can represent different things:
▪ Operations to be executed by the processor

▪ Numbers

▪ Enumerable things, such as text characters

 As long as we can assign it to a discrete number, we can 
represent it in binary 
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Binary Representation:
Simple Numbers

 Binary representation leads to a simple binary, i.e. base-2, 
numbering system
▪ 0 represents 0

▪ 1 represents 1

▪ Each “place” represents a power of two, exactly as each place in 
our usual “base 10”, 10-ary numbering system represents a power 
of 10
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Binary Representation:
Simple Numbers
 For example, we can count in binary, a base-2 numbering 

system
▪ 000, 001, 010, 011, 100, 101, 110, 111, …

▪ 000 = 0*22 +  0*21  +  0*20 =  0 (in decimal)

▪ 001 = 0*22 +  0*21  +  1*20 =  1 (in decimal)

▪ 010 = 0*22 +  1*21  +  0*20 =  2 (in decimal)

▪ 011 = 0*22 +  1*21  +  1*20 =  3 (in decimal)

▪ Etc.

 For reference, consider some base-10 examples:
▪ 000 = 0*102 +  0*101  +  0*100

▪ 001 = 0*102 +  0*101  +  1*100

▪ 357 = 3*102 +  5*101  +  7*20
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Binary Representation:
ASCII Table

 0 (decimal) = 000 (binary)

 1 (decimal) = 001 (binary)

 2 (decimal) = 010 (binary)

 Etc.
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Encoding Byte Values

 Bits are very small. It helps to consider 
groups of them, e.g. Bytes

 A Byte = 8 bits
▪ Binary 000000002 to 111111112

▪ Decimal: 010 to 25510
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Hexadecimal and Octal

 Writing out numbers in binary takes too many digits 

 We want a way to represent numbers more densely such that 
fewer digits are required
▪ But also such that it is easy to get at the bits that we want

 Any power-of-two base provides this property
▪ Octal, e.g. base-8, and Decimal, e.g. base-16 are the closest to our 

familiar base-10.

▪ Each has been used by “computer people” over time

▪ Hexadecimal is often preferred because it is denser. 
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Hexadecimal

 Hexadecimal 0016 to FF16

▪ Base 16 number representation

▪ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Consider 1A2B in Hexadecimal:
▪ 1*163 +    A*162 +   2*161 +   B*160

▪ 1*163 +    10*162 +   2*161 +   11*160 = 6699 (decimal)

▪ The C Language prefixes hexadecimal numbers with “0x” 
so they aren’t confused with decimal numbers

▪ Write FA1D37B16 in C as

▪ 0xFA1D37B

▪ 0xfa1d37b 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15213: 0011 1011 0110 1101

3 B 6 D
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Hexadecimal To Binary
▪ It is straight-forward to convert a hexadecimal number to binary:

▪ Groups of 4 digits represent 16 possibilities, 0-15, i.e. hexadeximal 0-F

▪ Group the hex digits into groups of 4 

▪ Start on the left side! 

– If there aren’t enough digits, leading 0s can be added on the left, 
but not on the right. 

▪ Convert each group of 4 bits into the corresponding hex digit.

▪ The concatenation of all of the hex digits is the hex number, because 
each hex digit represents the same thing as the 4 bits it represents. 

▪ Converting from hex to binary is the reverse process. 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15213: 0011 1011 0110 1101

3 B 6 D
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Common Data Types In the C Language

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

▪ Because resources are finite, a fixed amount of memory is usually allocated 
to data types, including numbers. 

▪ This amount of memory limits their range and/or precision.

– We’ll talk about that soon

▪ The table below shows some examples for the C programming Language
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Boolean Algebra

 Developed by George Boole in 19th Century
▪ Algebraic representation of logic

▪ Encode “True” as 1 and “False” as 0

And

◼ A&B = 1 when both A=1 and B=1

Or

◼ A|B = 1 when either A=1 or B=1

Not

◼ ~A = 1 when A=0

Exclusive-Or (Xor)

◼ A^B = 1 when either A=1 or B=1, but not both
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General Boolean Algebras

 Operate on Bit Vectors
▪ Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010
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Example: Representing & Manipulating Sets

 Representation
▪ Width w bit vector represents subsets of {0, …, w–1}

▪ aj = 1 if j ∈ A

▪ 01101001 { 0, 3, 5, 6 }

▪ 76543210

▪ 01010101 { 0, 2, 4, 6 }

▪ 76543210

 Operations
▪ &    Intersection 01000001 { 0, 6 }

▪ |     Union 01111101 { 0, 2, 3, 4, 5, 6 }

▪ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

▪ ~ Complement 10101010 { 1, 3, 5, 7 }
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Bit-Level Operations in C

 Operations &,  |,  ~,  ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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 Operations &,  |,  ~,  ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

Bit-Level Operations in C

 Operations &,  |,  ~,  ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~0100 00012 → 1011 11102

▪ ~0x00 → 0xFF

▪ ~0000 00002 → 1111 11112

▪ 0x69 & 0x55 → 0x41

▪ 0110 10012 & 0101 01012 → 0100 00012

▪ 0x69 | 0x55 → 0x7D

▪ 0110 10012 | 0101 01012 → 0111 11012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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Contrast: Logic Operations in C

 Contrast to Bit-Level Operators
▪ Logic Operations: &&, ||, !

▪ View 0 as “False”

▪ Anything nonzero as “True”

▪ Always return 0 or 1

▪ Early termination

 Examples (char data type)
▪ !0x41 → 0x00

▪ !0x00 → 0x01

▪ !!0x41→ 0x01

▪ 0x69 && 0x55 → 0x01

▪ 0x69 || 0x55 → 0x01

▪ p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)… 
Super common C programming pitfall!
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Shift Operations

 Left Shift: x << y

▪ Shift bit-vector x left y positions

– Throw away extra bits on left

▪ Fill with 0’s on right

 Right Shift: x >> y

▪ Shift bit-vector x right y positions

▪ Throw away extra bits on right

▪ Logical shift

▪ Fill with 0’s on left

▪ Arithmetic shift

▪ Replicate most significant bit on left

 Undefined Behavior
▪ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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Binary Number Lines
 In binary, the number of bits in the data type size 

determines the number of points on the number line. 
▪ We can assign the points any meaning we’d like

 Consider the following examples:
▪ 1 bit number line

0                                                  1

▪ 2 bit number line

00            01              10             11                 

▪ 3 bit number line

000  001 010  011  100   101  110  111     
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Some Purely Imaginary Examples

 3 bit number line

-1/16       -1/8     -1/4         0           1/16      1/8        1/4          1/2

0             1         2            3              4             5           6             7

-4          -3        -2            -1             0            1            2             3

-2          -1.5     -1           -0.5          0           0.5         1             1.5

A            B          C            D             E            F             G           H 
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Overflow

 Let’s consider a simple 3 digit number line:

0              1          2             3            4            5            6   7

000        001       010        011       100         101      110          111

 What happens if we add 1 to 7?
▪ In other words, what happens if we add 1 to 111?

 111+ 001 = 1 000
▪ But, we only get 3 bits – so we lose the leading-1. 

▪ This is called overflow

 The result is 000
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Modulus Arithmetic

 Let’s explore this idea of overflow some more
▪ 111 + 001 = 1 000 = 000

▪ 111 + 010  = 1 001 = 001

▪ 111 + 011 =  1 010  = 010

▪ 111 + 100 =  1 011  = 011

▪ …

▪ 111 + 110  = 1 101 = 101

▪ 111 + 111 = 1 110 =  110

 So, arithmetic “wraps around” when it gets “too positive”
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Unsigned and Non-Negative Integers

 We’ll use the term “ints” to mean the finite set of integer 
numbers that we can represent on a number line 
enumerated by some fixed number of bits, i.e. bit width. 

 We normally represent unsigned and non-negative int 
using simple binary as we have already discussed
▪ An “unsigned” int is any int on a number line, e.g. of a data type, 

that doesn’t contain any negative numbers

▪ A non-negative number is a number greater than or equal to (>=) 0 
on a number line, e.g. of a data type, that does contain negative 
numbers
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How represent negative Numbers?
 We could use the leading bit as a sign bit:

▪ 0 means non-negative

▪ 1 means negative

000        001      010        011         100        101       110        111

0            1           2            3              -0          -1            -2          -3

 This has some benefits
▪ It lets us represent negative and non-negative numbers

▪ 0 represents 0

 It also has some drawbacks
▪ There is a -0, which is the same as 0, except that it is different

▪ How to add such numbers 1 + -1 should equal 0

▪ But, by simple math, 001 + 101 = 110, which is -2?



Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Magic Trick!
 Let’s just start with three ideas:

▪ 1 should be represented as 1

▪ -1 + 1 = 0

▪ We want addition to work in the familiar way, with simple rules.

 We want a situation where “-1” + 1 = 0

 Consider a 3 bit number:
▪ 001 + “-1” = 0

▪ 001 + 111 = 0 

▪ Remember 001 + 111 = 1 000, and the leading one is lost to 
overflow.

 “-1” = 111
▪ Yep!
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Negative Numbers

 Well, if 111 is -1, what is -2? 
▪ -1   - 1

▪ 111 – 001 = 110

 Does that really work?
▪ If it does -2 + 2 = 0

▪ 110  +  010 = 1 000  = 000

 -2 + 5 should be 3, right? 
▪ 110 + 101 =  1 011  =  011

 In general
▪ -x = -1 - x
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Finding –x the easy way

 Given a non-negative number in binary, e.g. 5, represented 
with a fixed bit width, e.g. 4
▪ 0101

 We can find its negative by flipping each bit and adding 1
▪ 0101 This is 5

▪ 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped

▪ 1011          This is the “twos complement of 5”, e.g. 5 with the bits 
flipped and 1 added

▪ 0101  +  1011 =  1 0000 = 0000

 Because of the fixed with, the “two’s complement” of a 
number can be used as its negative.  
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Why Does This Work?

 Consider any number and its complement:
▪ 0101

▪ 1010

 They are called complements because complementary 
bits are set. As a result, if they are added, all bits are 
necessarily set:
▪ 0101 + 1010 = 1111

 Adding 1 to the sum of a number and its complement 
necessarily results in a 0 due to overflow
▪ (0101 + 1010) + 1   =   1111 + 1   = 1 0000  =  0000

 And if x + y = 0, y must equal –x
▪ So if x + TwosComplement(x) + 1 = 0
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Why Does This Work? Cont.

 If x + y = 0
▪ y must equal –x

 So if x + (TwosComplement(x) + 1) = 0
▪ TwosComplement(x) + 1 must equal –x

 Another way of looking at it:
▪ if x + (TwosComplement(x) + 1) = 0

▪ x + TwosComplement(x) = -1

▪ x = -1 - TwosComplement(x)

▪ -x = 1 + TwosComplement(x)
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Two-complement Encoding Example (Cont.)
x =      15213: 00111011 01101101

y =     -15213: 11000100 10010011

Weight 15213 -15213 

1 1 1 1 1 
2 0 0 1 2 
4 1 4 0 0 
8 1 8 0 0 

16 0 0 1 16 
32 1 32 0 0 
64 1 64 0 0 

128 0 0 1 128 
256 1 256 0 0 
512 1 512 0 0 

1024 0 0 1 1024 
2048 1 2048 0 0 
4096 1 4096 0 0 
8192 1 8192 0 0 

16384 0 0 1 16384 
-32768 0 0 1 -32768 

Sum  15213  -15213 
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Negation: Complement & Increment

 Negate through complement and increase
~x + 1 == -x

 Example
▪ Observation: ~x + x == 1111…111 == -1

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 

~x -15214 C4 92 11000100 10010010 

~x+1 -15213 C4 93 11000100 10010011 

y -15213 C4 93 11000100 10010011 
 

x = 15213
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Complement & Increment Examples

 Decimal Hex Binary 
x -32768 80 00 10000000 00000000 

~x 32767 7F FF 01111111 11111111 

~x+1 -32768 80 00 10000000 00000000 
 

x = Tmin (The most negative two’s complement number)

 Decimal Hex Binary 
0 0 00 00 00000000 00000000 

~0 -1 FF FF 11111111 11111111 

~0+1 0 00 00 00000000 00000000 
 

x = 0

Canonical counter example
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Encoding Integers: Dense Form

short int x =  15213;

short int y = -15213;

 C does not mandate using two’s complement
▪ But, most machines do, and we will assume so

 C short 2 bytes long

 Sign Bit
▪ For 2’s complement, most significant bit indicates sign

▪ 0 for nonnegative

▪ 1 for negative

B2T (X ) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2

B2U(X ) = xi 2
i

i=0

w−1



Unsigned Two’s Complement

Sign Bit

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 

y -15213 C4 93 11000100 10010011 
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Numeric Ranges
 Unsigned Values

▪ UMin = 0

000…0

▪ UMax = 2w – 1

111…1

 Two’s Complement Values

▪ TMin = –2w–1

100…0

▪ TMax = 2w–1 – 1

011…1

▪ Minus 1

111…1

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 

TMax 32767 7F FF 01111111 11111111 

TMin -32768 80 00 10000000 00000000 

-1 -1 FF FF 11111111 11111111 

0 0 00 00 00000000 00000000 
 

Values for W = 16
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Values for Different Word Sizes

 Observations
▪ |TMin | = TMax + 1

▪ Asymmetric range

▪ UMax = 2 * TMax + 1

▪ Question: abs(TMin)? 

 W 

 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 
 
 

 C Programming
▪ #include <limits.h>

▪ Declares constants, e.g.,

▪ ULONG_MAX

▪ LONG_MAX

▪ LONG_MIN

▪ Values platform specific
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Unsigned & Signed Numeric Values
 Equivalence

▪ Same encodings for nonnegative 
values

 Uniqueness
▪ Every bit pattern represents 

unique integer value

▪ Each representable integer has 
unique bit encoding

  Can Invert Mappings
▪ U2B(x)  =  B2U-1(x)

▪ Bit pattern for unsigned 
integer

▪ T2B(x)  =  B2T-1(x)

▪ Bit pattern for two’s comp 
integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings
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T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret
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Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U
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Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16
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+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement 
Range

Unsigned
Range

Conversion Visualized

 2’s Comp. → Unsigned
▪ Ordering Inversion

▪ Negative → Big Positive
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Signed vs. Unsigned in C

 Constants
▪ By default are considered to be signed integers

▪ Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
▪ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

▪ Implicit casting also occurs via assignments and procedure calls

tx = ux;                   int fun(unsigned u);

uy = ty;                   uy = fun(tx);
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0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned

-1 -2 > signed

(unsigned) -1 -2 > unsigned

2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

▪ If there is a mix of unsigned and signed in single expression, 
signed values implicitly cast to unsigned

▪ Including comparison operations <, >, ==, <=, >=

▪ Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1 

2147483647U -2147483647-1 

-1 -2 

(unsigned)-1 -2 

2147483647 2147483648U 

2147483647 (int) 2147483648U 
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Summary
Casting Signed ↔ Unsigned: Basic Rules

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
▪ int is cast to unsigned!!
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings
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Sign Extension

 Task:
▪ Given w-bit signed integer x

▪ Convert it to w+k-bit integer with same value

 Rule:
▪ Make k copies of sign bit:

▪ X  =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk
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Sign Extension: Simple Example

10 = 

-16 8 4 2 1

0 1 0 1 0

10 = 

-32 16 8 4 2 1

0 0 1 0 1 0

-10 = 

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 = 

Positive number Negative number
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Truncation

 Task:
▪ Given k+w-bit signed or unsigned integer X

▪ Convert it to w-bit integer X’ with same value for “small enough” X

 Rule:
▪ Drop top k bits:

▪ X  =  xw–1 , xw–2 ,…, x0

• • •

• • •X 
w

X • • • • • •

wk
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Truncation: Simple Example

10 = 

-16 8 4 2 1

0 1 0 1 0

-6 = 

-8 4 2 1

1 0 1 0

-10 = 

-16 8 4 2 1

1 0 1 1 0

6 = 

-8 4 2 1

0 1 1 0

Sign change

2 = 

-16 8 4 2 1

0 0 0 1 0

2 = 

-8 4 2 1

0 0 1 0

-6 = 

-16 8 4 2 1

1 1 0 1 0

-6 = 

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6
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Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)
▪ Unsigned: zeros added

▪ Signed: sign extension

▪ Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
▪ Unsigned/signed: bits are truncated

▪ Result reinterpreted

▪ Unsigned: mod operation

▪ Signed: similar to mod

▪ For small (in magnitude) numbers yields expected behavior
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Summary of Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary
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Unsigned Addition

 Standard Addition Function
▪ Ignores carry output

 Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001

+  1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

223

+ 213

446

190

unsigned char
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0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition
▪ 4-bit integers u, v

▪ Compute true sum 
Add4(u , v)

▪ Values increase linearly 
with u and v

▪ Forms planar surface

Add4(u , v)

u

v
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0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around
▪ If true sum ≥ 2w

▪ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow
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Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior
▪ Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

▪ Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001

+  1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

-23

+ -43

-66

-66
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TAdd Overflow

 Functionality
▪ True sum requires w+1

bits

▪ Drop off MSB

▪ Treat remaining bits as 
2’s comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver
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-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values
▪ 4-bit two’s comp.

▪ Range from -8 to +7

 Wraps Around

▪ If sum  2w–1

▪ Becomes negative

▪ At most once

▪ If sum < –2w–1

▪ Becomes positive

▪ At most once

TAdd4(u , v)

u

v

PosOver

NegOver
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Characterizing TAdd

 Functionality
▪ True sum requires w+1 bits

▪ Drop off MSB

▪ Treat remaining bits as 2’s 
comp. integer

TAddw (u,v) =

u + v + 2
w−1

u + v  TMinw

u + v TMinw  u + v  TMaxw

u + v − 2
w−1

TMaxw  u + v

 

 
 

 
 

(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

2w

2w
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Multiplication

 Goal: Computing Product of w-bit numbers x, y
▪ Either signed or unsigned

 But, exact results can be bigger than w bits
▪ Unsigned: up to 2w bits

▪ Result range: 0 ≤ x * y ≤ (2w – 1) 2 =  22w – 2w+1 + 1

▪ Two’s complement min (negative): Up to 2w-1 bits

▪ Result range: x * y ≥ (–2w–1)*(2w–1–1)  =  –22w–2 + 2w–1

▪ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

▪ Result range: x * y ≤ (–2w–1) 2 =  22w–2

 So, maintaining exact results…
▪ would need to keep expanding word size with each product computed

▪ is done in software, if needed

▪ e.g., by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

 Implements Modular Arithmetic
UMultw(u , v)= u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

1110 1001

*          1101 0101

1100 0001 1101 1101

1101 1101

E9

*  D5

C1DD

DD

233

*   213

49629

221
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Signed Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

▪ Some of which are different for signed 
vs. unsigned multiplication

▪ Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

-23

*   -43

989

-35

1110 1001

*          1101 0101

0000 0011 1101 1101

1101 1101

E9

*  D5

03DD

DD
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Power-of-2 Multiply with Shift

 Operation
▪ u << k gives u * 2k

▪ Both signed and unsigned

 Examples
▪ u << 3 == u * 8

▪ (u << 5) – (u << 3)== u * 24

▪ Most machines shift and add faster than multiply

▪ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••
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Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
▪ u >> k gives   u / 2k 

▪ Uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 

x >> 1 7606.5 7606 1D B6 00011101 10110110 

x >> 4 950.8125 950 03 B6 00000011 10110110 

x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••

u

2k/

u / 2kDivision: 

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0
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Signed Power-of-2 Divide with Shift

 Quotient of Signed by Power of 2
▪ x >> k gives   x / 2k 

▪ Uses arithmetic shift

▪ Rounds wrong direction when x < 0

0 0 1 0 0 0•••

x

2k/

x / 2kDivision: 

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary 
x -15213 -15213 C4 93 11000100 10010011 

x >> 1 -7606.5 -7607 E2 49  11100010 01001001 

x >> 4 -950.8125 -951 FC 49 11111100 01001001 

x >> 8 -59.4257813 -60 FF C4 11111111 11000100 
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Correct Power-of-2 Divide

 Quotient of Negative Number by Power of 2
▪ Want   x / 2k  (Round Toward 0)

▪ Compute as   (x+2k-1)/ 2k 

▪ In C: (x + (1<<k)-1) >> k

▪ Biases dividend toward 0

Case 1: No rounding

Divisor: 

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k 

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect
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Correct Power-of-2 Divide (Cont.)

Divisor: 

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings
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Arithmetic: Basic Rules

 Addition:
▪ Unsigned/signed: Normal addition followed by truncate,

same operation on bit level

▪ Unsigned: addition mod 2w

▪ Mathematical addition + possible subtraction of 2w

▪ Signed: modified addition mod 2w (result in proper range)

▪ Mathematical addition + possible addition or subtraction of 2w

 Multiplication:
▪ Unsigned/signed: Normal multiplication followed by truncate, 

same operation on bit level

▪ Unsigned: multiplication mod 2w

▪ Signed: modified multiplication mod 2w (result in proper range)


