Carnegie Mellon

AN o —— .

4SO A g it

1° S £

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Bits, Bytes and Integers

14-513/18-613: Introduction to Computer Systems
2"d and 39 Lectures, May. 20-21, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Announcements

m CMU Computing and Linux Boot Camp Monday evening during regular class
time
= A Quick Start Guide put together by your hard-working TAs has been posted
to Piazza and the course Web site to help you get started until then.

m Autolab has been created, but | am still configuring it.
" You don’t need it to start lab O, which is posted to the Web site

= |t will be available in plenty of time to turn in lab 0 and for the rest of the
labs thereafter.

m Reminder: I've got no control over the waitlist
= |'ve asked the departments and programs to let everyone in

= |'ve let the departments and programs know that we have enough TA
applicants to hire enough great TAs to fully support the course

" |n the summer, the departments have to work through each student’s
circumstance one-by-one to do the add. It can take time. A lot of time.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Analog Computers

m Before digital computers there were analog computers.

m Consider a couple of simple analog computers:

= A simple circuit can allow one to adjust voltages using variable
resistors and measure the output using a volt meter:

= Asimple network of adjustable parallel resistors can allow one to
find the average of the inputs.

V1 O———MA—— R,
I WV—
VZ(}—WV—‘Rz R
3 2
1K VWA Vo
— Y R]
Veo—x Vi — V, = V; —

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-
Summer-Calculator.phtml

https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-
without-a-transistor-op-amp-and-any-external-supply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply

Carnegie Mellon

The Challenge of Analog Computers

m All components suffer from tolerances, and noise
= Components aren’t manufacturer exactly

"= The performance of components varies with the environment and
as they age

= Signals are attenuated and affected by resistance, inductance,
capacitance, etc, as they travel through conductors

= Energy is lost during storage
= Conductors act as antennas and collect noise

m These properties mean that nothing is represented the
same way over time and space and nothing can be
communicated or duplicated or compared exactly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Needing Less Accuracy, Precision is Better

m We don’t try to measure exactly

= We just ask, is it high enough to be “On”, or

"= |sit low enough to be “Off”.

m We have two states, so we have a binary, or 2-ary, system.
= We represent these statesas 0and 1

m Now we can easily interpret, communicate, and duplicate signals well enough to

know what they mean.

C—— O > <
1.1V —
0.9V — /
0.2V —

—
0.0V —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

v

— 0 —

Carnegie Mellon

Binary Representation

m By encoding/interpreting sets of bits in various ways, we
can represent different things:
= QOperations to be executed by the processor
" Numbers
" Enumerable things, such as text characters

m As long as we can assign it to a discrete number, we can
represent it in binary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Binary Representation:

Simple Numbers

m Binary representation leads to a simple binary, i.e. base-2,
numbering system
" Orepresents O
" l1representsl

= Each “place” represents a power of two, exactly as each place in

our usual “base 10”, 10-ary numbering system represents a power
of 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Binary Representation:
Simple Numbers

m For example, we can count in binary, a base-2 numbering
system
= 000, 001, 010, 011, 100, 101, 110, 111, ...
= 000=0%22 + 0*21+* 0*2° = O (in decimal)
= 001 =0%22 + 0*21+ 1*20 = 1 (in decimal)
= 010=0%22 + 1*21+ 0*2° = 2 (in decimal)
= 011=0%22 + 1*21+ 1*20 = 3 (in decimal)
= Etc.
m For reference, consider some base-10 examples:
= 000 =0*102 + 0*10! * 0*10°
= 001 =0%*10% + 0*10! * 1*10°
« 357 =3%102 + 5*%101 *+ 7*20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Binary Representation:

ASCII Table

Dec HxOct Char Dec Hx Oct Html Chr |Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 «#64; [| 96 60 140 `
1 1 001 $0H (start of heading) 33 21 041 ! ! 65 41 101 &«#65; A | 97 61 141 a =
2 2 002 STX (start of text) 34 22 042 «#34; " 66 42 102 «#66; B | 958 62 142 b b
3 3 003 ETX (end of text) 35 23 043 «#35; # 67 43 103 «#67; C | 99 63 143 c ©
4 4 004 EOT (end of transmission) 36 24 044 $ § 68 44 104 «#68; D |100 64 144 d d
5 5 005 ENQ (enquiry) 37 25 045 «#37; % £9 45 105 «#69; E 101 65 145 «#101; #
6 6 006 ACK (acknowledge) 38 26 046 «#38; « 70 46 106 F F |102 66 146 f £
7 7 007 BEL (bell) 39 27 047 «#39; ' 71 47 107 &«#71: G |103 67 147 g o
& 8 010 BS (backspace) 40 28 050 «#40; | 72 48 110 «#72; H [104 68 150 «#104; h
9 9 0l1 TAE (horizontal tab) 41 29 051 «#4l;) 73 49 111 «#73; I [105 69 151 i 1
10 A 012 LF (NL line feed, new line)| 42 24 052 * * 74 4A 112 «#74; 7 |106 64 152 j J
11 B 013 VT (wertical tab) 43 2B 053 + + 75 4B 113 &«#75; K |107 6B 153 k k
12 C 014 FF (NP form feed, new page)| 44 2C 054 &«#44: , 76 4C 114 «#76; L |108 6C 154 l 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 M M |109 6D 155 m n
14 E 016 30 (shift out) 46 ZE 056 &«#46; . 78 4E 116 N N |110 6E 156 n n
15 F 017 $I (shift in) 47 2F 057 «#47; / 79 4F 117 O 0 |111 6F 157 &#lll; o
16 10 020 DLE (data link escape) 43 30 060 &«#48; 0 80 50 120 &«#80; P |112 70 160 p p
17 11 021 DC1 (device control 1) 49 31 061 1 1 81 51 121 l; 0 |113 71 161 q g
18 12 022 DC2 (device control 2) 50 32 062 2 2 82 52 122 «#82; R |114 72 162 r r
19 13 023 DC3 (device control 3) 51 33 063 3 3 83 53 123 «#83; 5 |115 73 163 &#l15; =
20 14 024 DC4 (device control 4) 52 34 064 «#52; 4 84 54 124 «#84; T |116 74 164 &#ll6; t
21 15 025 NAK (negative acknowledge) 53 35 065 &«#53; 5 85 55 125 U U |117 75 165 u u
22 16 026 SYN (synchronous idle) 54 36 066 «#54; 6 86 56 126 «#86; V |118 76 166 v v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 &«#87; W |119 77 167 w W
24 18 030 CAN (cancel) 56 38 070 «#56; @ 88 58 130 «#88; X |120 78 170 x X
25 19 031 EM (end of medium) 57 39 071 «#57; 9 89 59 131 Y ¥ |121 79 171 &#l2l; ¥
26 lh 032 SUB (substitute) 58 34 072 &«#58; : 90 SA 132 &«#90; Z |122 74 172 &#l22; z
27 1B 033 ESC (escape) 59 3B 073 «#59; ; 91 5B 133 «#91; [[123 7B 173 { {
28 1C 034 F5 (file separator) 60 3C 074 < < 92 5C 134 «#92; \ |124 7C 174 |
29 1D 035 G3 (group separator) 61 3D 075 «#6l; = 93 5D 135 &«#93;] [125 7D 175 }
30 1E 036 RS (record separator) 62 3E 076 «#62; > 94 SE 136 «#94; * |126 7E 176 ~ ~
31 1F 037 US (unit separator) 63 3F 077 &«#63; 2 95 S5F 137 «#95; _ |127 7F 177 &«#127; DEL

Source: www.LookupTables.com

0 (decimal) = 000 (binary)
1 (decimal) = 001 (binary)
2 (decimal) = 010 (binary)
Etc.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Encoding Byte Values

m Bits are very small. It helps to consider
groups of them, e.g. Bytes

m A Byte = 8 bits
" Binary 000000002t0 11111111,
= Decimal: 010 to 25510

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Hexadecimal and Octal

m Writing out numbers in binary takes too many digits

m We want a way to represent numbers more densely such that
fewer digits are required

= But also such that it is easy to get at the bits that we want

m Any power-of-two base provides this property

® QOctal, e.g. base-8, and Decimal, e.g. base-16 are the closest to our
familiar base-10.

= Each has been used by “computer people” over time
= Hexadecimal is often preferred because it is denser.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Hexadecimal L s
RETQOT N

m Hexadecimal 0016 to FFie 3 2 8882

= Base 16 number representation 2 |2 |0010

'TaYs 'TaV4 { V4 ir’ 3 3 0011

= Use characters ‘O’ to ‘9’ and ‘A’ to ‘F 2 | 4 | 0100

5 5 0101

6 6 | 0110

m Consider 1A2B in Hexadecimal: Z Z %éé

= 1*%163 + A*162 + 2*16! + B*169 9 [9 [1001

%123 %122 %11 *¥120 — : A |10] 1010

= 1*163 + 10*16%2 + 2*16' + 11*16° =6699 (decimal) B 1111011

CcC |12 | 1100

D |13 | 1101

E (14| 1110

F (15| 1111

" The C Language prefixes hexadecimal numbers with “Ox”
so they aren’t confused with decimal numbers

= Write ABF85 0041 1011 0110 1101
- OXxFA1D37B ' ' ' '
- Oxfald37b

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

B 6 D

Hexadecimal To Binary

= |tis straight-forward to convert a hexadecimal number to binary:
= Groups of 4 digits represent 16 possibilities, 0-15, i.e. hexadeximal O-F

<2
= Group the hex digits into groups of 4 Qg,“'Qe.C’\\(\‘b
= Start on the left side! ‘%—%%
— If there aren’t enough digits, leading Os can be added on the left, %%%
but not on the right. 4 14170100
(5 15 [0101]
6 |6 [0110]
= Convert each group of 4 bits into the corresponding hex digit. _293__8_1_0'0'0'
= The concatenation of all of the hex digits is the hex number, because [A J10[1010]
each hex digit represents the same thing as the 4 bits it represents. —E—%%
D [13[1101]
E [14[1110]
[F [I5[1I11]

= Converting from hex to binary is the reverse process.

15213: 0011 1011 011Q 1101

3 B 6 D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Common Data Types In the C Language

= Because resources are finite, a fixed amount of memory is usually allocated
to data types, including numbers.

= This amount of memory limits their range and/or precision.
— We'll talk about that soon
" The table below shows some examples for the C programming Language

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
010 O 010 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ AO T
R JEE

110 111 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Example: Representing & Manipulating Sets

m Representation
= Width w bit vector represents subsets of {0, ..., w—1}
" a=1lifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5 6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Bit-Level Operations in C

AN
>
ot 66\6\\00‘\\
m Operations &, |, ~, A Availablein C ‘g‘ g 5’000
= Apply to any “integral” data type 1|1 0001
] . . 2 [2 0010
long, int, short, char, unsigned 3 13 | 0011
= View arguments as bit vectors 4 | 4 |0100
= Arguments applied bit-wise 212 o1ts
g Pp 6 | 6 | 0110
7 |7 | 0111
m Examples (Char data type) 8 T8 11000
= ~0x41 > 9 | 9 [1001
A [(10] 1010
B (11| 1011
= ~0x00 - C |12 | 1100
D |13
E (14
F (15

= 0Ox69 & 0x55 >

= 0x69 | 0x55 -

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Bit-Level Operations in C

+
. . . er A’” o
m Operations &, |, ~, ” Available in C AN 2
= Apply to any “integral” data type

= long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~0x41 - OxBE
= ~0100 0001, - 1011 11102
= ~0x00 - OxFF
= ~0000 00002 - 1111 1111,
= 0x69 & 0x55 - 0x41
= 01101001, & 0101 0101, - 0100 0001,
= 0x69 | 0x55 = 0x7D
= 01101001, | 0101 0101, - 0111 1101,

| E|O|Q|w | |olo|do|;|a|w|h| ko
RRR(R R
e S R Y R P R e R S P LS L =
=
o
|_l
o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination

m Examples (char data type)
= 10x41 - 0x00

10x00 - 0x01

= 110x41- 0x01

Watch out for && vs. & (and | | vs. |)...
Super common C programming pitfall!

" 0Ox69 && 0x55 - 0x01
= 0x69 || 0x55 - 0x01

" p&&*p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Shift Operations
m Left Shift: x << y Argument x| 01100010
= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
= Right Shift: x >> y
= Shift bit-vector x right y positions

Log.>> 2 | 00011000

Arith. >> 2| 00011000

= Throw away extra bits on right Argument x| 10100010

" |Logical shift << 3 00010000
= Fill with 0’s on left

= Arithmetic shift
= Replicate most significant bit on left

Log.>> 2 | 00101000

Arith.>> 2| 11101000

m Undefined Behavior

= Shift amount < 0 or > word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Binary Number Lines

m In binary, the number of bits in the data type size
determines the number of points on the number line.

= We can assign the points any meaning we’d like

m Consider the following examples:

= 1 bit numbeﬂnﬁe —@-
0

1

= 2 bit number line

%

= 3 bit number line

ﬁOOl 010 Hl ﬁ&lfwﬁ

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Some Purely Imaginary Examples

m 3 bit number line

o000 0000

-1/16 -1/8 -1/4 0 1/16 1/8 1/4 1/2

o000 0000

o000 0000

1.5

A A-4h 40 A -4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Overflow

m Let’s consider a simple 3 digit number line:
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

m What happens if we add 1 to 7?
" |n other words, what happens if we add 1 to 1117?

= 111+ 001 =1 000

= But, we only get 3 bits — so we lose the leading-1.
" This is called overflow

m The resultis 000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Modulus Arithmetic

m Let’s explore this idea of overflow some more
= 111+ 001 =1 000 =000
= 111+ 010 =1 001 =001
= 111+011= 1010 =010
= 111+100= 1011 =011

" 111+110 =1101=101
" 111+111=1110= 110

m So, arithmetic “wraps around” when it gets “too positive”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Unsighed and Non-Negative Integers

m We’'ll use the term “ints” to mean the finite set of integer
numbers that we can represent on a number line
enumerated by some fixed number of bits, i.e. bit width.

m We normally represent unsigned and non-negative int
using simple binary as we have already discussed

= An “unsigned” int is any int on a number line, e.g. of a data type,
that doesn’t contain any negative numbers

= A non-negative number is a number greater than or equal to (>=) O

on a number line, e.g. of a data type, that does contain negative
numbers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

How represent negative Numbers?

m We could use the leading bit as a sign bit:
" (0 means hon-negative
" 1 means negative

o000 0000

011 101 111
0 1 2 3 -0 -1 -2 -3

m This has some benefits

= |t lets us represent negative and non-negative numbers
" Orepresents O

m It also has some drawbacks

" There is a -0, which is the same as 0, except that it is different
" How to add such numbers 1 + -1 should equal O
= But, by simple math, 001 + 101 = 110, which is -27?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

A Magic Trick!

m Let’s just start with three ideas:
= 1 should be represented as 1
= 1+1=0
= We want addition to work in the familiar way, with simple rules.

m We want a situation where “-1” +1=0

m Consider a 3 bit number:
= 001+“1”=0
= 001+111=0

= Remember 001 + 111 =1 000, and the leading one is lost to
overflow.

m “-1" =111
" Yep!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Negative Numbers

m Well,if 111is -1, what is -2?
=] -1
= 111-001=110

m Does that really work?
" |fitdoes-2+2=0
= 110 + 010=1000 =000

m -2+ 5 should be 3, right?
= 110+101= 1011 = 011

m In general
" x=-1-x

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Finding —x the easy way

m Given a non-negative number in binary, e.g. 5, represented
with a fixed bit width, e.g. 4
= 0101

m We can find its negative by flipping each bit and adding 1
= 0101 Thisis 5
= 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped

= 1011 This is the “twos complement of 5”7, e.g. 5 with the bits
flipped and 1 added

= 0101 + 1011 = 10000 = 0000

m Because of the fixed with, the “two’s complement” of a
number can be used as its negative.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Why Does This Work?

m Consider any number and its complement:
= 0101
= 1010

m They are called complements because complementary
bits are set. As a result, if they are added, all bits are
necessarily set:

= 0101 +1010=1111

m Adding 1 to the sum of a number and its complement
necessarily results in a 0 due to overflow
= (0101 +1010)+1 = 1111+1 =10000 = 0000
m Andif x +y =0, y must equal —x

= Soif x + TwosComp Iement(xE) +1=0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Why Does This Work? Cont.

m Ifx+y=0

" y must equal —x

m Soif x+ (TwosComplement(x)+1)=0

= TwosComplement(x) + 1 must equal —x

m Another way of looking at it:
= if x + (TwosComplement(x) + 1) =0
= x + TwosComplement(x) = -1
= x=-1-TwosComplement(x)

= -x =1+ TwosComplement(x)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Negation: Complement & Increment

m Negate through complement and increase

~x + 1 == -x
m Example
= QObservation: ~x + x == 1111..111 == -1
x |1]0{0f1}1]1]0]1
+ ~x [0]1]1]0]0]0j1{0
-1 |1{1)1)1}1{1}1]1
X =15213
Decimal [Hex Binary
X 15213| 3B 6D| 00111011 01101101
~X -15214| C4 92| 11000100 10010010

~x+1 | -15213| C4 93(11000100 10010011
y -15213| C4 93| 11000100 10010011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Complement & Increment Examples

x=0
Decimal Hex Binary
0 0| 00 00| 00000000 00000000
~0 -1 FF FF| 11111111 11111111
~0+1 0| 00 00| 00000000 0OOOOOOO

X = Tmin (The most negative two’s complement number)

Decimal [Hex Binary
X -32768| 80 00 10000000 00000000
~X 32767| 7F FF| 01111111 11111111
~x+1 -32768| 80 00| 10000000 00000000

Canonical counter example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Encoding Integers: Dense Form

Unsigned Two’s Complement
w—1) w=2 .
BUX) = Y x;-2 BT(X) = —x, 2"+ x -2
i=0 i=0
short int x = 15213; ‘\\\\\\\

short int y = -15213; Sign Bit

m Cdoes not mandate using two’s complement

= But, most machines do, and we will assume so

m Cshort 2 bytes long

Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
Y -15213| C4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative

=] for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Numeric Ranges

m Unsigned Values
= UMin = 0

m Two’s Complement Values

= TMin = —2w-1
000...0 100...0
[- w_
UMax 2" = TMax = 2wi-1
111..1 011..1
" Minus 1
111..1
Values for W =16
Decimal Hex Binary
UMax 65535(FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 0OOOOQOOOQO
-1 -1 FF FF| 11111111 11111111
0 O| 00 00| 00000000 0OOOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

38

Carnegie Mellon

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

m Observations

m CProgramming

= |TMin| = TMax+1
= Asymmetric range
= UMax = 2*TMax+1

= Question: abs(TMin)?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

" Hinclude <limits.h>

= Declares constants, e.g.,
= ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

39

Carnegie Mellon

Unsighed & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m = Can Invert Mappings

= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer

40

Carnegie Mellon

Today: Bits, Bytes, and Integers

N
N
m Integers
o
= Conversion, casting
o
o
o
u

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Mapping Between Sighed & Unsigned

Two’s Complement

X

Unsigned
Ux

*| T2B

T2U

—

B2U

Unsigned

X

Maintain Same Bit Pattern

U2T

A 4

U2B

a»

B2T

> UX

Two’s Complement

X

Maintain Same Bit Pattern

> X

m Mappings between unsigned and two’s complement numbers:

Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

42

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 —JTul— 5
0110 6 6
0111 7 —1U2T}f: 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 o 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Relation between Sighed & Unsigned

Two’s Complement = Unsigned
X > T2B 7’ B2U > UX

Maintain Same Bit Pattern

w—1 0
Uux |+|+|+ o0 0 +|+|+

x [EEE e T+[+[*

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Conversion Visualized

m 2’s Comp. — Unsigned

= QOrdering Inversion UMax

" Negative — Big Positive UMax =1

/-" TMax + 1 | unsigned

a

- TMax @ ® T\Max Range

2’s Complement
Range

&Q

_ TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

" |mplicit casting also occurs via assignments and procedure calls
tx = ux; int fun (unsigned u);
uy = ty; uy = fun (tx) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation
0 ouU == unsigned
1 0 < signed
-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Summary
Casting Sighed €= Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Today: Bits, Bytes, and Integers

N
N
m Integers
o
o
= Expanding, truncating
o
o
N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Sign Extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

m Rule:
= Make k copies of sign bit:
= X = Xy seeer Xyt s Xpye1 » Xy 1++0» X
L]
k copies of MSB < w >
o 00
X’ o000 (N
< k >€ W >

Bryant and O’Hallaron, Computer Systems: A Programmer’s| ctive, Third Edition 51

Carnegie Mellon

Sign Extension: Simple Example

Positive number Negative number
-16 8 4 2 1 -16 8 4 2 1
10 = 0 1 0 1 0 -10 = 0 1 1 0
32 16 8 4 2 1 37 16 8 4 2 1
10 = % 1 0 1 0 -10 = 1 { 0 1 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Truncation

m Task:

= Given k+w-bit signed or unsigned integer X
= Convert it to w-bit integer X’ with same value for “small enough” X

m Rule:
= Drop top k bits:
= X = X1 Xyg s X
< k ><€ W >
X o000 (N
X’ o 00
< W >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Truncation: Simple Example

No sign change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0

-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -6 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 -10 mod 16 = 22U mod 16 = 6U = 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod
= For small (in magnitude) numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Summary of Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
O
m Integers
o
o
o
= Addition, negation, multiplication, shifting
O
O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Unsigned Addition

Operands: w bits U ==
+ vV XK
True Sum: w+1 bits 3+ v —
Discard Carry: wbits ~ UAdd, (u , v) xy .
>
"] N 0‘30%\“06
m Standard Addition Function 5T T 0000
" lgnores carry output é é 8823
m Implements Modular Arithmetic + o Toto0
s = UAdd, (u,v) = u+v mod2¥ 2 2 8123
7 | 7 | 0111
unsigned char 1110 1001 E9 223 g g 1882
+ 1101 0101 + D5 + 213 A [10 | 1010
B [11 | 1011
1 1011 1110 1BE 446 c [12 [1100
1011 1110 BE 190 [{14[iit0
F |15 | 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers u,v Integer Addition

"= Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Visualizing Unsigned Addition
m Wraps Around Overflow

" |f true sum > 2% \

" At most once

True Sum
2W+1--
Overflow
2V T T_ I
O —

Modular Sum

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Two’s Complement Addition

Operands: w bits u 20
+ v o 00

True Sum: w+1 bits
u + V o0 0
Discard Carry: w bits TAdd, (u , v) se o

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Willgive s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
1 1011 1110 1BE -66

1011 1110 BE -66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

TAdd Overflow

m Functionality True Sum
" True sumrequires w+1 ~ 01111 -1 T
bits rosover TAdd Result
" Drop off MSB 0100..0 w-i_7 + T O0lL.1
" Treat remaining bits as
2’s comp. integer 0000..0 0 T T 000..0
1011..1 _2W—1 - - 100...0
1 000...0 _ow 1 NegOver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver
m Values \

= 4-bit two’s comp.

TAdd,(u, v)

= Range from -8 to +7

m Wraps Around
= |f sum > 2wt
= Becomes negative
= At most once
" |f sum < -2%1
= Becomes positive
= At most once

u 4 _ PosOver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Characterizing TAdd

Positive Overflow

m Functionality TAdd(u, v)
" True sum requires w+1 bits 50 \
= Drop off MSB Vv
= Treat remaining bits as 2’s <0 \
comp. integer /
/<Ou>0

Negative Overflow

(Ut v+ 2w u+v < TMin,, (NegOver)
TAdd,(u,v) = u+v TMin,, <u+v<TMax,,
u+v— 2% TMax,, <u+V (PosOver)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y

= Either signed or unsigned

m But, exact results can be bigger than w bits
" Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2 = 22w —-2w*l 4+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Result range: x * y > (=27 1)*(2w1-1) = —22w=24 w1
" Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Result range: x * y < (—2w1) 2 = 22w
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
" jsdonein software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Unsigned Multiplication in C

u o 00
Operands: w bits
*)
\%
True Product: 2*w bits U " V ° 0 s o
UMUlt u.yv co e
Discard w bits: w bits Wt 5 V)
m Standard Multiplication Function
= |gnores high order w bits
m Implements Modular Arithmetic
UMult, (u,v)= u -v mod?2¥
1110 1001 E9 233
* 1101 0101 * D5 * 213
1100 0001 1101 1101 C1lDD 49629

1101 1101 DD 221

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Signed Multiplication in C

u o 00
Operands: w bits
*)
\%
True Product: 2*w bits U " V oo oo
TMult, (u , v Y
Discard w bits: w bits CERY
m Standard Multiplication Function
" |gnores high order w bits
= Some of which are different for signed
vs. unsigned multiplication
= Lower bits are the same
1110 1001 E9 -23
* 1101 0101 * D5 * -43
0000 0011 1101 1101 03DD 989
1101 1101 DD -35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k

Operands: w bits

% 2k Ol eee |01110]| eee |O|O
True Product: w+k bits U - 2k ® oo 0| eee |0]O
Discard k bits: w bits UMult, (u , 2) oo 0] eee [0]0
TMult, (u , 2F)
m Examples
" u << 3 == u * 8
" (u<< 5) - (u<< 3)== u * 24

= Most machines shift and add faster than multiply
= Compiler generates this code automatically

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Unsignhed Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= g > kagives Lu / 2¢]
= Uses logical shift

k
u oee oeoe Binary Point
Operands:
/ 2k O| eee [0]l1]0] eee |0O]0
Division: 1/ 2k [0f eee]0]O (
Result: | u/2k | [0] == J0JO
Division Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x > 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6(00000011 10110110

x >> 8 | 59.4257813 59 00 3B| 00000000 00111011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Carnegie Mellon

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x >> kgives | x /7 2¢]
= Uses arithmetic shift
" Rounds wrong direction whenx < 0

k
X see see Binary Point
Operands:
/ 2k Ol eee |01110]| eee |0O]|0O /
Division: x / 2k 1L LU (Ll
Result: RoundDown(x / 2¥) eoe eoe
Division Computed Hex Binary
X -15213 -15213 C4 93(11000100 10010011
x > 1 -7606.5 -7607 E2 49| 11100010 01001001
x >> 4 -950.8125 -951 FC 49| 11111100 01001001
x >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Carnegie Mellon

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
= Want [x / 2¢¥] (Round Toward 0)
= Compute as | (x+2k-1)/ 2k
» InC: (x + (1<<k)-1) >> k

» Biases dividend toward O

Case 1: No rounding i
Dividend: y AT ese T T0[e« J0IO
+2k_1 [0 eee [O[O]1] eee f1]1
coe 1] eee [1]1] Binary Point
Divisor: | 2k 0] eee JOJ1]0] e+ fO]O /
[/ 2k Eees TIIEIal T ee- L AETm

Biasing has no effect

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: x L] eee
_|_2k_1 Ol eee [0Ol0O]1] eee |1]1

1 (X X (X X
L& J
Y
Incremented by 1 Binary Point
Divisor: [2k 10] eee [0]1]0] e+ 0|0 /
/
| x/2F | [AL T s 11T =
L& J
Y

Incremented by 1

Biasing adds 1 to final result

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Today: Bits, Bytes, and Integers

N
N
m Integers
=" Summary
u

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Carnegie Mellon

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2" (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

