—— Bell Laboratories VeriSoft ——

“Model-Checking” Software
with VeriSoft

Patrice Godefroid
Bell Laboratories, Lucent Technologies

Overview:

1. What is VeriSoft?
2. How does it work?
3. Industrial applications.

4. Summary 4+ comparison with related
work.

5. Future work — challenges.

Page 1 —

—— Bell Laboratories VeriSoft ——

1. What is VeriSoft?
Concurrent Reactive System Analysis

Each component is viewed as a ‘reactive” system, i.e.,
a system that continuously interacts with its
environment.

Precisely, we assume:

e finite set of processes executing aribitrary code
(e.g., C, C++, Java, Tcl, ...);

e finite set of communication objects
(e.g., message queues, semaphores, shared
memory, TCP connections, UDP packets,...).

Problem:
Developing concurrent reactive systems is hard!
(many possible interactions)

Traditional testing is of limited help! (poor coverage)
Scenarios leading to errors are hard to reproduce!

Alternative: Systematic State-Space Exploration

Page 2 ——

—— Bell Laboratories VeriSoft ——
State Space
(Dynamic Semantics)

e Processes communicate by executing operations
on communication objects.

e operations on communication objects are visible,
other operations are invisible;

e only executions of visible operations may be
blocking:

e the system is said to be in a global state when the
next operation to be executed by every process is
visible;

e a move from one global state to another global
state is a transition:;

e state space = set of global states 4+ transitions.

N\ @

N

deadlock

Theorem: Deadlocks and assertion violations are
preserved in the ‘state space” as defined above.

Page 3 ——

—— Bell Laboratories VeriSoft ——

Systematic State-Space EXxploration

VeriSoft can systematically explore the state
space of a concurrent reactive system.

Interceptions of all visible operations:

e control of all the processes;

e complete control over nondeterminism
(i.e., concurrency + VS_toss(n));

e Observation of visible operations and
global states.

VS scheduler

(semaphores, signals, shared memory)

—— Bell Laboratories VeriSoft ——

VeriSoft

VeriSoft searches state spaces for:

e deadlocks,

e assertion violations,

e livelocks (no enabled transition for a

process during x successive transitions),

e divergences (a process does not

communicate with the rest of the system
during more than x seconds).

When an error is detected, VeriSoft reports a
scenario leading to that error.

An interactive graphical simulator/debugger
IS also available.

Page 5 ——

—— Bell Laboratories VeriSoft ——

2. How does VeriSoft work?

VeriSoft looks simple! Why did we have to
wait for so long (15 years) to have it?

Existing state-space exploration tools are
restricted to the analysis of models (i.e.,
abstract descriptions) of software systems.

Each state is represented by a unique
identifier.

During state-space exploration, visited states
are saved in memory (hash-table, BDD,...).

With programming languages, states are
much more complex!

Computing and storing a “unique identifier”
for each state is unrealisitc!

Page 6 ——

—— Bell Laboratories VeriSoft ——

State-Less Search

Idea: perform a state-less search!
(still terminate when state space is acyclic)

Equivalent to ‘“state-space caching” with an empty
cache: this search technique is terribly inefficient!
[H85,JJ91]

Example: dining philosophers (toy example)

500000
450000
400000
350000
300000
250000
200000
150000
100000
50000
0

Transitions

N8
W
N
0
o
~
O
o
o

1

Philosophers

For 4 philosophers, a state-less search explores
386,816 transitions, instead of 708.

Every transition is executed on average 546 times!

Page 7 ——

—— Bell Laboratories VeriSoft ——

An Efficient State-Less Search

[GHP92]: Redundant explorations due to state-space
caching can be strongly reduced by using Sleep Sets
[G90], and “partial-order methods” in general [G96].

VeriSoft: original algorithm combining

e state-less search,
e sleep sets [G90,GW93],
e conditional stubborn sets [V90,GP93,G96].

Theorem: For finite acyclic state spaces, the above
algorithm can be used for the detection of deadlocks
and assertion violations without incurring the risk of
any incompleteness in the verification results.

Observation:

when using this algorithm, most of the states are
visited only once during the search.

~» Not necessary to store them!

500000

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

Classical =—

State-less +--
New - 7

Transitions

Philosophers

—— Bell Laboratories VeriSoft ——

VeriSoft — Summary

VeriSoft is the first tool for systematically
exploring the state spaces of systems
composed of several concurrent processes
executing arbitrary (e.g., C or C++) code.

Originality: framework, search, tool
[POPL'97].

The key to make this approach tractable is to
use smart state-space exploration algorithms!

In practice, the search is typically incomplete.

From a given initial state, VeriSoft can always
guarantee a complete coverage of the state

space up to some depth.

Page 9 ——

—— Bell Laboratories VeriSoft ——

3. Industrial Applications

Examples of Applications:
(within Lucent Technologies)

3.1 4ESS Heart-Beat Monitor analysis
(debugging, reverse-engineering).

3.2 Wavestar 40G integration testing
(testing).

3.3 Automatic Protection Switching analysis
(interoperability protocol testing).

Page 10 ——

—— Bell Laboratories VeriSoft ——

3.1 4ESS Heart-Beat Monitor Analysis

e May affect millions of calls per day.

e Determines status of elements connected
to 4ESS switch from propagation delays
of messages.

e Plays an important role in routing new
calls in 4ESS switch (by triggering “No
Trunk Hunt” (NTH) = switch from
out-of-band to in-band signalling).

e November 1996: ‘field incident” ...
e June 1997: calls from ‘“field rep.” ...
e Code is 7 years old, modified 3 years ago.

e Several hundred lines of EPL (assembly)
code.

e How does this code work exactly?7?7?

Page 11 ——

—— Bell Laboratories VeriSoft ——

Analysis of 4ESS HBM using VeriSoft

e Translate EPL code to C code
(using existing partial compiler).

e Build test harness for HBM C code:
simple “wrapper’ program
(takes only a few hours!).

e Model the environment of the HBM: with
“VS_toss(n)"
(takes only a few hours!).

e Add “VS_assert(0)” where NTH in HBM code.
e Check properties (reverse-engineering « testing).

. HBM
(EPL->C)!

DLN

~» Discovered flaws in documentation and
unexpected behaviors in software itself...

Page 12 ——

—— Bell Laboratories VeriSoft ——

Example of Scenario Found

Processor A Processor B
index O
stage 1, count=0
index O, dlightly late
index 1
stage 1,count=2
index 1, on time
index 2
stage 1, count=1
index O
stage 1, count=1 :
index 2, late
index 0, on time
stage 1,count=2 index 1
due to processing order!
index 1, on time
stage 1, count=1 index 2

(See paper [BLTJ'98] for details.)

Page 13 ——

VeriSoft ——

—— Bell Laboratories

Conclusions of the 4ESS HBM Analysis

HBM: Analysis revealed flaws in documentation and
unexpected behaviors in software itself.

e HBM code is very “irregular’
(very hard to predict behavior).

e Similar analysis performed on previous version:

— more sensitive, although not strictly:
— also “irregular”.

e Design of a new version:

— passes these tests;
— implemented in new release.

VeriSoft:

e Can quickly reveal behaviors virtually impossible to
detect using conventional testing techniques
(due to lack of controllability and observability).

e Strength: no need to model the application!

— Eliminates this time-consuming and
error-prone task required with other
state-space exploration tools.

— VeriSoft is WYSIWYG: great for reverse
engineering!

Page 14 ——

—— Bell Laboratories VeriSoft ——

3.2 Wavestar 40G Integration Testing

Q3-Agent Solaris Testing Environment

[Tcl script }
Pl
Agent Tester
Q3 Agent P2
OLS simulator
P3
[Tcl script }
Solaris

“Black-box"” testing, large processes
(O(10° — 10°) lines of C/C++ code).

Page 15 ——

—— Bell Laboratories VeriSoft ——

Wavestar Testing with VeriSoft
(work in progress)

e From the testers’ point of view, two main new Tcl
commands are available with VeriSoft:

— VS_toss simulates nondeterminism.

— VS _assert is used to determine whether test
passed/failed.

These commands can be used anywhere
(any language, any procedure, any process).

e A single nondeterministic test script can specify a
family of thousands of (deterministic) test scripts.

[...]
if VS_toss(1) then event = MSG1
else event = MSG2;
switch(VS_toss(2)) {
case 0: param = PARAM1;
break;
case 1: param = PARAM2;
break;
case 2: param = PARAM3;
}s
send-to-IUT event param
if (test-failed) then VS_assert(0)
[...] /* 6 possible combinations */

e All these test scripts are automatically generated,
executed and evaluated by VeriSoft.

Note: some of these test scripts can also be executed
in “target” environment (ok if automatic (and fast))

Page 16 ——

—— Bell Laboratories

VeriSoft ——

3.3 Automatic Protection Switching

Technician input

|

Analysis

Working line

Technician input

|

_— =

SONET lines

-

APS
controller
(switch A)

APS
controller

(switch B)

|

Monitor input

Backup line

|

Monitor input

e A 5ESS “switch-maintenance”

application.

_— =

-

SONET lines

e APS protocol ensures that both switches

read data from the same line. (APS is

part of SONET/SDH standard.)

e Several thousands lines of C code.

e \VeriSoft discovered several

incompatibilities between different

versions of APS code.

Page 17 ——

—— Bell Laboratories VeriSoft ——

4. Summary: Key Features of VeriSoft

e Tool for analyzing concurrent/reactive
software written in any language.

e Automatically generates, executes and
evaluates (many) scenarios.

e Complete state-space coverage is
guaranteed up to some depth.

e Can quickly reveal behaviors that are
virtually impossible to detect using
conventional testing techniques
(reduce interval, increase quality).

e Applications: testing, debugging,
reverse-engineering.

e An interactive graphical
simulator/debugger is also available.

Page 18 ——

—— Bell Laboratories VeriSoft ——

Comparison with Related work

Other model-checkers (for software): (e.g., SPIN,
VESMvalid)

e language dependent;
e need a model, or limited to high-level design;

e but analyzing a model is easier.
Specification-based test generation: (e.g., TestMaster)

e language dependent;
e test generation only:;

e Nno support for concurrency
(testing through a single interface only).

Static analysis techniques for automatic model
extraction (ex of tool 7):

e language dependent 4+ often need additional
restrictions:

e abstraction is not a panacea: it always introduces
unrealistic behaviors;

e overall, complementary with VeriSoft
(e.g., see [PLDI'98]).

~» VeriSoft (the concept) is here to stay...

Page 19 ——

—— Bell Laboratories VeriSoft ——

5. Future Work — Challenges

e Scalability limited by the ‘state
explosion” problem...

e Used naively, poor feedback is likely, but
used properly, can be extremely effective.
~» Training is necessary!

e Help to model the environment...
“Automatically Closing Open Reactive
Programs” [PLDI'98]

e Improve feedback to user...
coverage information, state-space
visualization

“Technology transfer” is starting
inside + outside Lucent Technologies...

See http://www.bell-labs.com/"god

Page 20 ——

—— Bell Laboratories VeriSoft ——

Main References

[G97] “Model Checking for Programming
Languages using VeriSoft”, P. Godefroid,
POPL'97.

[G96] “Partial-Order Methods for the
Verification of Concurrent Systems — An
Approach to the State-Explosion
Problem”, P. Godefroid, LNCS 1032.

[GHJ98] “Model Checking Without a
Model: An Analysis of the Heart-Beat
Monitor of a Telephone Switch using
VeriSoft”, P. Godefroid, B. Hanmer and
L. Jagadeesan, ISSTA'98. Journal version
in Bell Labs Tech. Journal, 1998.

[CGJ98] “Automatically Closing Open
Reactive Programs”, C. Colby, P.
Godefroid and L. Jagadeesan, PLDI'98.

See http://www.bell-labs.com/"god

Page 21 ——

