Lecture 4 (Introduce SMV)
Analysis of Software Artifacts
Somesh Jha



MAIN module

e This 1s what SMV uses to build a model.

Very similar to the main function in C.

e Put all your global variables in the MAIN
module.

e Instantiate all modules here.

e Consider the following fragment of the SMV
code:

MODULE main

VAR
semaphore: boolean;
procl: process user(semaphore);
proc2: process user(semaphore);



MAIN module (Contd)

e The name of the MAIN module is main.

o After the keyword VAR declare all your
variables.

e Variable semaphore is of type boolean.

e procl is a component/state-machine of
type user.

e MODULE user will be defined later.

e Notice that semaphore is passed as a
parameter to user. Will become clear later.



What is that process thingy?

e The keyword process tells SMV to use
asynchronous composition.

e This means that at every step either a
transition from proci or proc2 (but not
both) is taken or executed.

e This i1s what creates the bug. Will get to
that later.



Declaring transitions

e Transitions and the initial state of the

system are described after the keyword
ASSIGN.

e In case of the main module we only define
the mitial value for the semaphore.

ASSIGN
init(semaphore) := 0;



Specifications in C'T'L

e Specifications are written in C'T'L and
follow the keyword SPEC.

e You can have multiple specifications. Here
we have only specification.

e The spec looks like:

AG (procl.state = entering
-> AF procl.state = critical)

e What does 1t say”?



The user module

e The user module is a template or a type
of a state machine.

e Notice that no type for parameter
semaphore is specified in the declaration.

e SMV will figure out the type. I don't like
this.



The user module (Contd)

e The declaration for the user module is:

MODULE user(semaphore)
VAR

state : {idle,entering,critical,exiting}.

e Variable state i1s an enumerated type and
can have any of the four specified values.

e Internally, SMV codes everything as
booleans.



FAIRNESS condition

e Recall that the system will pick one of
procl and proc2 arbitrarily and execute a
transition from that process.

e Given no restrictions, there might be paths

where a process (say procl) never gets to
execute

e FATRNESS running (see the end of the
MODULE user definition) precludes that.

e SMV has an internal variable for each
process (called running) which is set equal

to true when a transition from that process
executes.



axfing | (rfica

! !



Running SMV

-- specification AG (procl.state = entering -> AF procl.s... is false
-- as demonstrated by the following execution sequence

state 1.1:

semaphore = 0

procl.state = idle
proc2.state = idle
[stuttering]

state 1.2:

[executing process proci]

-- loop starts here --
state 1.3:

procl.state = entering
[stuttering]

state 1.4:
[executing process proc2]

state 1.5:
proc2.state = entering
[executing process proc2]

state 1.6:

semaphore = 1
proc2.state = critical
[executing process proci]

state 1.7:
[executing process proc2]

state 1.8:
proc2.state = exiting

11



[executing process proc2]

state 1.9:
semaphore = 0
proc2.state = idle
[stuttering]

resources used:

user time: 0.0833333 s, system time: 0.166667 s
BDD nodes allocated: 1202

Bytes allocated: 1245184

BDD nodes representing transition relation: 69 + 1

12



Structure of the counter-example

e Negation of the specification looks like

EF (procl.state = enteringA
EG (procl.state # critical))

e How does the counter-example look?

13



Counter-example explained

o State 1.1
Variables semaphore, procl.state, and
proc2.state are 0, idle, and idle
respectively.

e State 1.2
Same state as 1.1. SMV only shows
variables that change in the transition. We
execute a transition from procl.

e State 1.3
Loop or a cycle 1s formed by states 1.3
through 1.9. Notice that on this cycle
procl.state is never equal to critical.
procl changes its state to entering.

14



Counter-example (Contd)

e State 1.4
Same state as 1.3 but going to execute a
transition from proc2.

e State 1.5
Process proc2 changes state to entering
and we are going to execute a transition
from process proc2.

e State 1.6
Process proc2 sets the semaphore to 1 and
moves to the critical state. Going to
execute procl.

15



Counter-example (Contd)

e State 1.7
Semaphore is set to 1 so procl stays in
entering state. We are going to execute
proc2.

e State 1.8
Process proc2 moves to the exiting state.
We are going to execute a transition from
proc?2.

e State 1.9
Variable semaphore reset to 0 and proc2
moves to idle state. We can stay in this
state for arbitrarily long time
(stuttering). Notice that this is the same
state as State 1.3. We have a loop.

16



Points to notice

e Process procl was never in the critical
state in the loop.

e In the loop process procl did execute (state
1.6 to 1.7). Hence FAIRNESS running is
true. Poor procl couldn’t do much because
the semaphore was set to 1 by proc2

17



Explaining the counter-example

® Process procl was stuck in the state
entering and was never chosen to make
the transition to the critical state.

o [z
Assert that process i1s not in the state
entering infinitely often.

e Change the fairness constraint to:

FATIRNESS
running & !(state=entering)

18



Everything is fine

e SMYV says that the specification 1s true:

-- specification AG (procl.state = entering -> AF procl.s... is true

resources used:

user time: 0.0833333 s, system time: 0.133333 s
BDD nodes allocated: 615

Bytes allocated: 1245184

BDD nodes representing transition relation: 69 + 1

19



