Model Checking Real Time Systems (Lecture 7)

Analysis of Sottware Artifacts



Agenda

e overview of model checking real time systems
e introduce real time CTL or RTCTL

e introduce quantitative analysis



Why verify real-time systems?

e several applications require predictable response times
e to function correctly

e some applications are
— controllers for aircratt
— industrial machinery

— robots

e crrors can have catastrophic effects



Rate monotonic scheduling (RMS)

e powerful tool for analyzing real-time systems
e simple to use and provides useful information

e limitations on types of processes
— periodicity

— synchronization



Some papers on RMS

e M.G. Harbour, M.H. Klein, and J.P. Lehoczky,
Timing analysis for fixed-priority of hard real-time

systems, IEEE Transactions on Software Engineering,
20(1), 1994.

e J.P.Lehoczky, L. Sha, J.K. Strosnider, and H.
Tokuda, Fixed priority scheduling theory for hard
real-time systems, In Foundations of Real-Time

Computing-Scheduling and Resource Management,
Kluwer Academic Publishers, 1991.



Real time model checking

no restrictions on system being specified
use real time version of CTL

much harder than RMS

for certain types of systems, does not scale



Dense versus discrete time

dense time uses real numbers to represent time
discrete time uses integers to represent time
analysis for dense time is very hard

we will only cover discrete time



Real time CTL (RTCTL)

e regular CTL has no notion of time
e EF(f) says that sometime in the future f
e will become true, but does not say when

e only way to talk about time is using the X operator



Example

e If in a state a transaction T starts (denoted by
T'.started), then

e it always finishes in the next 3 cycles

e finishing a transaction is denoted by T.finished



RTCTL path operators

e consider a path m
S0y 91y """y Siy "

o fUj, g is true on a path 7 if and only if
— for some 1, a <1< b, 5, =g
—and for all j <, s; = f
e g becomes true somewhere in the time interval |a, 0]

e f is true until g becomes true



Points to notice

e cach transition takes one unit of time

e how can one model transitions that take more than

one unit of time?

— model them as several unit-time transitions



Gijq,p) Path operator

e consider a path w
S0y 51y """y iy "

o G,y f 1s true on a path 7 if and only if
— for all ¢ such that a <¢< b, s, = ¢

e f is true in the time interval [a, b]



Example revisited

e a transaction started always finishes with next three
time cycles

AG(T started — AF3(T.finished)

o represent Fp, 3 in terms Uy y



Specification patterns revisited

EF | (Started A = Ready)
AG(Req — AFy (Ack))
AG(AF |y (DeviceEnable))
AG(EF | (Restart))



Quantitative timing analysis

e provide information on how much a system deviates

from its expected performance
e extremely useful in fine-tuning the system

e identity bottlenecks in your system, i.e., slow

operations



Minimum Delay Analysis

e inputs: two sets of states, start and final

e returns
— shortest path between a state in start
— to a state in final

— return oo if no such path exists

e MIN(T.started,T.finished)



Maximum Delay Analysis

e inputs: two sets of states, start and final

e returns
— longest path between a state in start
— to a state in final
— return oo if there is an infinite
— path from a state in start that never

— reaches finish

o MAX(T.started,T.finished)



Condition counting

e condition counting measures how many times a given
e condition is true on a path

e carlier measures strictly based on path length



Minimum condition counting

e inputs
— set of starting states: start
— set of final states: final
— a condition: cond

¢ output: minimum times condition cond is true along

a path from start to final

e MIN(T.started,T.finished,T.idle)



Maximum condition counting

e inputs
— set of starting states: start
— set of final states: final
— a condition: cond

e output: maximum times condition cond is true along

a path from start to final

o MAX(T.started,T.finished,T.idle)



Round robin scheduling

assume that there are n processes Fy,---, P,_1

each process has the following four states
— idle (process is not doing anything)
— ready (process is ready to run)

— running (process is running)
scheduler picks a process in state ready to run

we will now describe the round-robin policy



Round robin scheduling

keep a variable [ast
initial value of last 1s O
some processes are ready to run

scheduler scans the processes in the following order

last, (last + 1) mod n, - - -, (last + n — 1) mod n



Round robin scheduling

pick the first process that is scanned
and 1s in the state ready and schedule it

let the process that is picked be P;

set variable last to 2



Is Round Robin Scheduling Fair?

e is it possible that a process is in the
e state ready and never gets to run?

e 1 claim this is not possible. Why?



