SMV continued (Lecture 5)

Analysis of Sottware Artifacts



Agenda

discuss another example
a small vending machine
homeworks 2 and 3 will be based on this example

discuss additional capabilities of SMV



Vending machine

® one user
e one vending machine

e takes two coins to buy a beverage



User (Variables)

e state
— 1nitial, one-coin, two-coins
— making-choice, waiting

e choice

— none, coke, diet-coke

— sprite, mountain-dew



Vending machine (Variables)

e state
— 1nitial, one-coin, two-coins

— get-choice, dispense



User (Initial values)

e initial value for the variable state

state := 1nitial;

e initial value for the variable choice

choice := none;



User (Transitions)

if state 1s initial and state of the
vending machine is initial stay
In initial or transition to one-coin

using non-determinism

state = initial & (vending-machine-state = initial)

{ initial, one-coin };



User (Transitions)

if state is one-coin move to two-coins
indicates that the user has deposited the second coin
when state is making-choice the user makes choice

see the transitions for the variable choice



User (Transitions)

see the state variable choice

make a non-deterministic choice between beverages
when state = making-choice

go back to none when

beverage has been dispensed



Vending machine (Initial)

e initial value of state is
e initial
e user-state and choice passed

® as parameters



Vending machine (Transitions)

only few transitions

can you locate them in the code?
change state from initial to one-coin
if the user-state is one-coin

go to state dispense after get-choice



Macros

e in SMV you can define macros using the keyword
DEFINE

e in module vending-machine define a macro
DISPENSED

DEFINE
DISPENSED := state = dispense;



Instantiating

instantiate the module vending-machine
instantiate the module user
create “real” state machines

module is like a type definition



Instantiating

MODULE main
VAR
machine: vending-machine(msee-user.state,
msee-user.choice) ;
msee-user: user (machine.DISPENSED,

machine.state) ;



Specification

e if the user state is one-coin and
e vending machine state 1s initial, then

e always eventually vending machine state is dispensed



Specification

SPEC
AG(((msee-user.state = one-coin) &
(machine.state = initial))

-> AF(machine.state = dispense))



Enumerating behaviors

e sometimes you want to demonstrate a certain
e behavior or trace from a spec

e for example,

show me a trace when transaction 7’1 is finished



Enumerating behaviors

e enumerate a trace where the vending machine

dispenses

e negation of the property is

'machine.DISPENSED

e assert that 'machine 1s never true



Specification

SPEC

AG('machine.DISPENSED)



Negation of the property

is EF (machine.dispensed)
so the counterexample to the previous spec is a
trace where the vending machine eventually

dispenses



