Probabilistic Systems (Lecture 21)

Analysis of Software Artifacts



Outline

e Markov chains: notions and analysis
e Probabilistic CTL
e Model Checking for PCTL

e Probabilistic Verus and symbolic model checking with
MTBDDs



Probabillistic Systems

Stochastic systems: events occur with certain
probabilities.

Examples: manufacturing systems, controllers,
environment, etc.



Properties of interest

e steady-state probability
e mean time to failure

e average lifetime

o reliability

e probability of reaching a state after a given time



Stochastic and Markov Processes

discrete random variable: probability mass function
p(r) = PIX = ]

continuous rnd. var.: cumulative distribution function
F(x)=P|X <z

p(x) €[0,1]; Xpepp(x) = 1; F(x) € 0,1];
F(—o00) =0; F(4+00) =1

stochastic process = collection of rnd. var. indexed by
timet € T



Stochastic and Markov Processes

discrete-time process (7 = IN) or continuous-time process

(T =R)
{X (%)} is a Markov process iff is has the memoryless

property:
future probabilistically determined by present,
independent of past

P X (thy1) < pg1| X(tn) = h, ..., X(to) = o] = P[X(tpg1) < @pg1| X (tr) = 1)
For discrete state space: Markov chain:

P[X(thy1) = zpq1| X(tr) = xx, ..., X(to) = zo] = P[X(trhy1) = zry1| X (tr) = x1]



Transition Probabilities

Consider: discrete-time Markov chain, with integers as
state space.

Define: p;;(k) = P|Xy+1 = 7 | Xk = 1¢]. Then,
25 pi(k) = 1.

n-step transition probability:

pij(k,k+n) = PlXjm = j | Xie = i.

@SA\? k+ 3v — MﬁmU@&ﬁA\Ang@\Q_AQu k + 3V\ k m U m k+n
(Chapman-Kolmogorov equation)



Transition Probabilities

homogeneous Markov chain if p;;(k) independent of £ =
Define transition probability matrix T = |p;;]

All rows sum up to 1: stochastic matrix.




Example: A Simple Markov Chain

Telephone call process with discrete time slots:
e at most one call in one slot; probability o
e calls complete with probability 3

e if phone busy, call is lost

e process call arrival if it
occurs at time of call completion



State transition diagram




Analyzing Markov Chains

Classification of states:

e state j reachable from i if p;;(k) > 0 for some k.
o state set S closed ift p;; =0Vi e S5 & S

e state is absorbing iff p;; = 1

o irreducible closed set if any state
reachable from any other



Analyzing Markov Chains

o recurrent state if probability of returning to it is 1

o transient state if not recurrent

e positive recurrent state if mean recurrence time < oo
e positive recurrent state: periodic or aperiodic

= with these notions, can analyze steady-state behavior



Steady-State Analysis

e state probability 7, (k) = P|X; = J]
e state probability vector 7 (k) = [mo(k), m1(k), .. ]
Question: does limy_,, 7(k) exist ?

Theorem: In an irreducible aperiodic Markov chain, the
limit lim;_,, 7(k) always exists and is independent of
the initial state probability vector.



Temporal Logic Analysis: Computation Model

Computation model: labelled Markov chain (.S, s, T', i)
where:

¢ S = finite state space
e s’ = initial state

e :S xS —|0,1] = transition relation with
Mum\m% MJA%u %\v =1



Temporal Logic Analysis: Computation Model

e 11 : S — 24F =labeling function (AP = set of atomic
propositions)
T induces probability measure on set of execution

traces.



Probabilistic CTL

[Hansson and Jonsson, RTSS89]

Syntax: State formulas sf and path formulas pf.

sf = prop [ =sf [ sfy Asfo | [pflsp | [2f]5p
pf w= sf {US'sfy | sf US'sf
strong until weak until



Probabilistic CTL

Semantics:

oo | sfUStsf, iff 3i < t.oi] | sf, and

vj € [0,4.0lj] = sf4

o0 | sf USsf, iff o = sf,UStsf, or

vj e [0, tl.olj] = sfy

¢ s = [pf]s, iff prob. measure of paths that satisfy pf
exceeds p



Properties in PCTL

ﬁmﬁ pSf = wgmdmﬁ 5SS
%\ — I_HHVH —p ! \
mxmgﬁmm“

. %@G ' ack: there is probability at least p that there is
an ack <S¢:5 t units and that reg stays true until ack
becomes true

e GS \@& there is no failure for ¢ time units with
ﬁwowmgr_a\ at least p

mJ ,alarm: an alarm occurs with probability at least p



within time ¢



Model Checking for PCTL: Until Operator

Probability of a path from s satisfying f; U f; defined
inductively:

e p(s,0)=if s = f5 then 1 else 0
e p(s,t) =if s = fy then 1 elseif s = f; then O/ *
directly */

else Y- cs T'(s,s )p(s’,t —1) [ *
recursive */



Model Checking

e build transition probability matrix P from 1" as
follows:

o Plsy,s;)| =T|sg,s)|if s, = finsy fE fol*

recursive case */

o Plsp,s)| =1if =(sp = finse = fo) N(E=1)1* keep
sane */

e P[s;, s;] = 0 otherwise

e compute vector p(s,t) = P'p(s,0)
o M = \HC.WN\M iff p(s’,t) > p



Probabilistic Verus

[Hartonas-Garmhausen, Campos, Clarke 1998]
e introduce probabilistic selection statement:

pselect(py : stmty;...pm : stmiy,) with p; € [0, 1],
2= Pi =1
e compilation of program yields probabilistic transition

matrix

e implemented symbolically using MTBDDs
(multi-terminal BDDs)

e fully symbolic efficient representation and algorithms



Multi-Terminal BDDs

e MTBDDs are binary decision diagrams with arbitrary

values
(from a finite set) in the terminal nodes

e matrix representation: BDD variables are row and
column indices;
terminal values are matrix elements

e if matrix is sparse or presents regularity = compact
representation



Multi-Terminal BDDs

e matrix operation implemented recursively using BDD

apply operator

0 1 0 1




Practical Results with ProbVerus

e manufacturing systems: verify downtime
probabilities

e also transportation; fault-tolerant industrial process
control

e largest example: a safety-critical system for railway
stations

e safety, liveness, response times, probabilities of
reaching unsafe states



Practical Results with ProbVerus

e complexity: 10" states; about 5 minutes per
specification

e deadlock discovered and located through
counterexample trace



