Probabilistic Systems (Lecture 21)

Analysis of Software Artifacts

Outline

- Markov chains: notions and analysis
- Probabilistic CTL
- Model Checking for PCTL
- **MTBDDs** Probabilistic Verus and symbolic model checking with

Probabilistic Systems

probabilities. Stochastic systems: events occur with certain

Examples: manufacturing systems, controllers, environment, etc.

Properties of interest

- steady-state probability
- mean time to failure
- average lifetime
- reliability
- probability of reaching a state after a given time

Stochastic and Markov Processes

discrete random variable: probability mass function

$$p(x) = P[X = x]$$

continuous rnd. var.: cumulative distribution function

$$F(x) = P[X \le x]$$

$$p(x) \in [0, 1]; \sum_{x \in D} p(x) = 1;$$

 $F(-\infty) = 0; F(+\infty) = 1$

$$F(x) \in [0, 1];$$

time $t \in \mathcal{T}$ stochastic process = collection of rnd. var. indexed by

Stochastic and Markov Processes

 $(\mathcal{T} = \mathbb{R})$ discrete-time process ($\mathcal{T} = \mathbb{N}$) or continuous-time process

property: $\{X(t)\}$ is a Markov process iff is has the memoryless

independent of past future probabilistically determined by present,

$$P[X(t_{k+1}) \le x_{k+1} | X(t_k) = x_k, \dots, X(t_0) = x_0] = P[X(t_{k+1}) \le x_{k+1} | X(t_k) = x_k]$$

For discrete state space: Markov chain:

$$P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k, \dots, X(t_0) = x_0] = P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k]$$

Transition Probabilities

state space Consider: discrete-time Markov chain, with integers as

 $\sum_{j} p_{ij}(k) = 1.$ Define: $p_{ij}(k) = P[X_{k+1} = j \mid X_k = i]$. Then,

n-step transition probability:

$$p_{ij}(k, k+n) = P[X_{k+n} = j \mid X_k = i].$$

$$p_{ij}(k, k+n) = \sum_{r \in D} p_{ir}(k, u) p_{rj}(u, k+n), k \le u \le k+n$$
 (Chapman-Kolmogorov equation)

Transition Probabilities

simply p_{ij} homogeneous Markov chain if $p_{ij}(k)$ independent of $k \Rightarrow$

Define transition probability matrix $T = [p_{ij}]$

All rows sum up to 1: stochastic matrix.

Example: A Simple Markov Chain

Telephone call process with discrete time slots:

- ullet at most one call in one slot; probability lpha
- ullet calls complete with probability eta
- if phone busy, call is lost
- process call arrival if it occurs at time of call completion

State transition diagram

Analyzing Markov Chains

Classification of states:

- state j reachable from i if $p_{ij}(k) > 0$ for some k.
- state set S closed iff $p_{ij} = 0 \ \forall i \in S, j \notin S$
- state is absorbing iff $p_{ii} = 1$
- *irreducible* closed set if any state reachable from any other

Analyzing Markov Chains

- recurrent state if probability of returning to it is 1
- transient state if not recurrent
- ullet positive recurrent state if mean recurrence time $<\infty$
- positive recurrent state: periodic or aperiodic
- ⇒ with these notions, can analyze steady-state behavior

Steady-State Analysis

- state probability $\pi_j(k) = P[X_k = j]$
- Question: does $\lim_{k\to\infty} \pi(k)$ exist? • state probability vector $\pi(k) = [\pi_0(k), \pi_1(k), \ldots]$

the initial state probability vector. Theorem: In an irreducible aperiodic Markov chain, the limit $\lim_{k\to\infty} \pi(k)$ always exists and is independent of

Temporal Logic Analysis: Computation Model

Computation model: labelled Markov chain (S, s^0, T, μ) where:

- S = finite state space
- s^0 = initial state
- $T: S \times S \rightarrow [0,1] = \text{transition relation with}$

$$\sum_{s' \in S} T(s, s') = 1$$

Temporal Logic Analysis: Computation Model

propositions) • $\mu: S \to 2^{AP} =$ labeling function (AP =set of atomic

T induces probability measure on set of execution traces.

Probabilistic CTL

[Hansson and Jonsson, RTSS89]

Syntax: State formulas *sf* and path formulas *pf*. $sf ::= prop \mid \neg sf \mid sf_1 \wedge sf_2 \mid [pf]_{\geq p} \mid [pf]_{>p}$ $pf ::= sf_1 \mathbf{U}^{\leq t} sf_2 \mid sf_1 \mathcal{U}^{\leq t} sf_2$

strong until weak until

Probabilistic CTL

Semantics:

• $\sigma \models sf_1 \mathbf{U}^{\leq t} sf_2 \text{ iff } \exists i \leq t. \sigma[i] \models sf_2 \text{ and }$

 $\forall j \in [0,i].\sigma[j] \models sf_1$

• $\sigma \models sf_1 \mathcal{U}^{\leq t} sf_2$ iff $\sigma \models sf_1 \mathbf{U}^{\leq t} sf_2$ or

 $\forall j \in [0,t].\sigma[j] \models sf_1$

exceeds p• $s \models [pf]_{>p}$ iff prob. measure of paths that satisfy pf

Properties in PCTL

- $\bullet \mathbf{F} \leq t \leq t sf = true \mathbf{U} \leq t \leq p sf$
- $\bullet \ \mathbf{G} \leq t \leq t \leq t = \neg \mathbf{F} \leq t \leq t p \neg s f$

Examples:

- becomes true an ack within t units and that req stays true until ack • $req \bigcup_{\leq p}^{\leq t} ack$: there is probability at least p that there is
- probability at least p• $\mathbf{G}_{\geq p}^{\leq t} fail$: there is no failure for t time units with
- ullet $\mathbf{F}_{\geq p}^{\leq t} alarm$: an alarm occurs with probability at least p

within time t

Model Checking for PCTL: Until Operator

inductively: Probability of a path from s satisfying $f_1 U^{\leq t} f_2$ defined

- $p(s,0) = \text{if } s \models f_2 \text{ then } 1 \text{ else } 0$
- directly */ • $p(s,t) = \text{if } s \models f_2 \text{ then 1 else if } s \not\models f_1 \text{ then 0 } / *$ else $\sum_{s' \in S} T(s, s') p(s', t-1)$

recursive */

Model Checking

follows: ullet build transition probability matrix P from T as

recursive case */ • $P[s_k, s_l] = T[s_k, s_l] \text{ if } s_k \models f_1 \land s_k \not\models f_2 / *$

same */ • $P[s_k, s_l] = 1$ if $\neg(s_k \models f_1 \land s_k \not\models f_2) \land (k = l) / *$ keep

- $P[s_k, s_l] = 0$ otherwise
- compute vector $\bar{p}(s,t) = P^t \bar{p}(s,0)$
- $M \models f_1 \mathbf{U}_{\geq p}^{\leq t} f_2 \text{ iff } \bar{p}(s^0, t) \geq p$

Probabilistic Verus

[Hartonas-Garmhausen, Campos, Clarke 1998]

introduce probabilistic selection statement:

$$\begin{aligned} \mathtt{pselect}(p_1:stmt_1;\dots p_m:stmt_m) & \quad \text{with } p_i \in [0,1], \\ \sum_{i=1}^m p_i &= 1 \end{aligned}$$

- matrix compilation of program yields probabilistic transition
- (multi-terminal BDDs) implemented symbolically using MTBDDs
- fully symbolic efficient representation and algorithms

Multi-Terminal BDDs

values MTBDDs are binary decision diagrams with arbitrary

(from a finite set) in the terminal nodes

column indices; matrix representation: BDD variables are row and

terminal values are matrix elements

representation • if matrix is sparse or presents regularity ⇒ compact

Multi-Terminal BDDs

apply operator matrix operation implemented recursively using BDD

Practical Results with ProbVerus

- probabilities manufacturing systems: verify downtime
- control also transportation; fault-tolerant industrial process
- stations largest example: a safety-critical system for railway
- reaching unsafe states safety, liveness, response times, probabilities of

Practical Results with ProbVerus

- specification • complexity: 10^{27} states; about 5 minutes per
- counterexample trace deadlock discovered and located through