Probability Basics (Lecture 20)

Analysis of Software Artifacts

Applications of Probability and Statistics

- Decision Making
- should I go with an off-the-shelf component or develop it in-house
- tradeoffs between cost and reliability
- should I test more or release a possibly "buggy" software now
- tradeoff between reliability and time to market

Applications

Cost models

- linear regression used in software cost models
- such as COCOMO
- Bayesian statistics used in cost models as well
- any more?

Applications

- metrics for software reliability
- entirely based on statistics
- mean time between failures or MTBF
- expected time between two failure events
- testing
- random sampling used in testing
- Markov chains also used to generate test cases

Role of Probability Theory

- probability used as a means for quantifying uncertainties
- probability is dependent on time
- reference time will be denoted by τ
- known quantities about the software
- denoted by ${\cal H}$
- amount of testing already done
- composition of the team
- the cost of producing it

Random quantities

- quantities that are unknown we will call random quantities
- MTBF
- number of bugs remaining
- reliability

Types of Random Quantities

- Random Variables
- realization of these variables are numbers
- could real numbers or integers
- realizations denoted by smaller case letters
- for random variables T and X, realizations denoted by t and x

Random Events

- Random events
- distinguishing feature is that a random event only takes two values
- random events will be generally propositions, e.g. true or false
- MTBF is greater than a specified time Z
- any more?

Notation

- $P^{\tau}(E|\mathcal{H})$
- probability at time τ that event E happens
- given the past history ${\cal H}$
- why is $P^{\tau+\gamma}(E|\mathcal{H})$ not same as $P^{\tau}(E|\mathcal{H})$

How should we interpret probability?

- probability of a head occurring when a coin is flipped
- flip a coin N times (N is large, say a million)
- let us say coin comes up head h number of times
- probability of a head is $\frac{h}{N}$
- probability interpreted as the frequency of a repeatable event

Subjective View

- $P(E|\mathcal{H})$ interpreted as the belief of a person given that he/she knows the history \mathcal{H} that E will occur
- interpret $P(E|\mathcal{H})$ as a betting coefficient
- how much a person is willing to bet that event Ewill happen in exchange of one dollar?
- we call this view subjective probability
- which view is better for software engineering?

Let us start

- X a random variable and X=x denote the event that X realizes the value x
- $P(X = x | \mathcal{H})$ is abbreviated as $P_X(x | \mathcal{H})$
- $P_X(x|\mathcal{H}) > 0$ then X is said to have a point mass at x
- $P(X \le x | \mathcal{H})$ is called the distribution function of X
- distribution function denoted by $F_X(x|\mathcal{H})$
- density function and denoted by $f_X(x|\mathcal{H})$ the derivative of $F_X(x|\mathcal{H})$ at x is called the *probability*

Some questions

- let X be uniformly distributed between [0,1]
- what is $F_X(x)$?
- what is $f_X(x)$?
- is $F_X(x)$ always smooth?
- if $F_X(x)$ jumps at x_1 , what does it mean?

Multiple Random Variables

- interpret $F_{X_1,X_2}(x_1,x_2|\mathcal{H})$ as $P(X_1 \leq x_1 \text{ and } X_2 \leq x_2|\mathcal{H})$ • $f_{X_1} \leq x_1 x_2|\mathcal{H}) dx_1 dx_2$ approx
- $f_{X_1,X_2}(x_1,x_2|\mathcal{H})dx_1dx_2$ approximates - $P(x_1 \le X_1 \le x_1 + dx_1 \text{ and } x_2 \le X_2 \le x_2 + dx_2)$

Example

- consider an unit square and
 X and Y be the two coordinates
- let $F_{X,Y}(x,y)$ be $x \cdot y$
- what is $f_{X,Y}(x,y)$?

Conditional Probabilities and Independence

- consider two random variables X_1 and X_2
- suppose you know the value of X_2
- this knowledge affects your judgement about X_1

Conditional Probabilities

- $P_{X_1|X_2}(x_1|x_2,\mathcal{H})$ is the probability that X_1 realizes the value x_1 given that X_2 has the value x_2
- this is called the conditional probability of X_1 given X_2
- $P(X_1 \le x_1 | X_2 = x_2, \mathcal{H})$ is abbreviated by $F_{X_1|X_2}(x_1|x_2,\mathcal{H})$
- known as the conditional distribution of X_1 given X_2

Independence

suppose the following equation is true

$$P(X_1 = x_1 | X_2 = x_2, \mathcal{H}) = P(X_1 = x_1 | \mathcal{H})$$

- what does it mean?
- realization of X_2 does not affect the distribution of X_1
- X_1 is said to be independent of X_2
- are X and Y independent in our unit square example?

Independence

- if X_1 and X_2 are independent, then what is $P(X_1 = x_1 \text{ and } X_2 = x_2 | \mathcal{H})$?
- suppose a software is developed by two teams Aand B
- X_A first time software developed by A fails
- similarly for X_B

Independence

- analyst assesses $P(X_A \ge \tau | \mathcal{H})$ and $P(X_B \ge \tau | \mathcal{H})$ as p_A and p_B respectively
- what does it mean to say that X_A and X_B are independent?

Why independence?

- generally the independence assumption is not true
- code developed from same specification
- many experiments performed which refute the independence assumption
- independence assumption makes calculations easier
- generally a very idealistic assumption

Laws of Probability

• **Convexity:** For any event *E*

$$0 \le P(E|\mathcal{H}) \le 1$$

simultaneously (they are mutually exclusive), then **Additivity:** If both E_1 and E_2 cannot occur

$$P(E_1 \text{ or } E_2|\mathcal{H}) = P(E_1|\mathcal{H}) + P(E_2|\mathcal{H})$$

• Multiplicativity:

$$P(E_1 \text{ and } E_2|\mathcal{H}) = P(E_1|E_2,\mathcal{H})P(E_2|\mathcal{H})$$

Generalizations

consider n events E_1, \dots, E_n that are mutually exclusive

$$P(E_1 \text{ or } E_2 \text{ or } \cdots E_n | \mathcal{H}) = \sum_{i=1}^n P(E_i | \mathcal{H})$$

multiplicative law takes the following

$$P(E_1 ext{ and } E_2 ext{ and } \cdots E_n | \mathcal{H}) = P(E_1 | E_2, \cdots, E_n, \mathcal{H}) \times P(E_2 | E_3, \cdots, E_n, \mathcal{H}) \times \cdots \times P(E_n | \mathcal{H}) \times P(E_n | \mathcal{H})$$

More equations

suppose E_1 and E_2 are not mutually exclusive

$$P(E_1 \text{ or } E_2|\mathcal{H}) = P(E_1|\mathcal{H}) + P(E_2|\mathcal{H}) - P(E_1 \text{ and } E_2|\mathcal{H})$$

if E_1 and E_2 are independent

$$P(E_1 \text{ or } E_2|\mathcal{H}) = P(E_1|\mathcal{H}) + P(E_2|\mathcal{H}) - P(E_1|\mathcal{H})P(E_2|\mathcal{H})$$

An Example

- consider a system made up of a hardware and software component
- a fault within the next day E_H denote the event that the hardware experiences
- fault within the next day E_S denote the event that the software experiences a
- the system fails if either hardware or software fail

An Example

the system reliability is given by

$$P(E_H \text{ or } E_S | \mathcal{H})$$

given by the following expression (suppressing the history)

$$P(E_H) + P(E_S) - P(E_H \text{ and } E_S)$$

if E_H and E_S are independent, then the expression simplifies to

$$P(E_H) + P(E_S) - P(E_H)P(E_S)$$

Example Extended

- suppose the hardware has a backup system
- the probability that the hardware component fails is

$$P(E_H \text{ and } E_B)$$

the probability given above evaluates to

$$P(E_H|E_B)P(E_B)$$

the probability that the system will fail is

$$P((E_H \text{ and } E_B) \text{ or } E_S)$$

The Law of Total Probability

- suppose X_1 and X_2 are two discrete random variables
- $P(X_1 = x_1, X_2 = x_2)$ is their joint probability
- the marginal of X_1 alone is

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1 | X_2 = x_2)$$

Bayes Law

compute

$$P(X_1 = x_1 | X_2 = x_2) = \frac{P(X_1 = x_1, X_2 = x_2)}{\sum_{x_1} P(X_1 = x_1, X_2 = x_2)}$$

applying the multiplicative rule we get

$$\frac{P(X_2 = x_2 | X_1 = x_1)P(X_1 = x_1)}{\sum_{x_1} P(X_2 = x_2 | X_1 = x_1)}$$