
1

Analysis of Software Artifacts
Somesh Jha

Lecture 15
Structural testing of concurrent programs

João Pedro Sousa

We Have been looking at

Static analysis of code
Tease out the structure
Code optimization

Structural test
Exercising the system with a specific test suite
What can we get from structural test?
How does it work for concurrent systems?

2

Why structural testing? (1)

Structural testing does not give you:

How well the most used functionality is tested
How well the most critical functionality is tested

Structural testing:

Assumes all the code is equally important

Why structural testing? (2)

With structural testing you get to know:

How much (and which) of the code is being
exercised by a given test suite

When is that useful to know?
not sure about the usage patterns
sure about usage patterns but you want to know
how much of the code is supporting them…

3

Computational paths
Typical patterns (1)

B0

B0
if (cond) {

B1
}
B2

In order to measure how much code is exercised by a given test,
we first build a (test independent) graph view of the code to be tested

B1

B2

cond

!cond

B0
if (cond) {

B1
} else {

B2
}
B3 B0

B1

B3

cond !cond

B2

Computational paths
Typical patterns (2)

B0
case (exp) {

v1: B1
…
vn: Bn

}
Bn+1

In order to measure how much code is exercised by a given test,
we first build a (test independent) graph view of the code to be tested

B0

B1

Bn+1

exp==v1

Bn

exp==vn

B2 …

4

Computational paths
Typical patterns (3)

B0

B0
while (cond) {

B1
}
B2

In order to measure how much code is exercised by a given test,
we first build a (test independent) graph view of the code to be tested

B1

B2

cond

!cond
cond

!cond

B0
repeat {

B1
} until (cond)
B2

B0

B1

B2

cond

!cond

How many computational paths? (1)

How many test cases do we need to write to
check all the combinations?

open file;
type;
replace;
close file;

open file;
replace;
type;
close file;

open file;
type;
close file;
replace;

open file;
replace;
close file;
type;

Example: text editor

≠ ≠ ≠

5

How many computational paths? (2)

get

B1

ε

x==v1

Bn

x==vn

B2 …

…
repeat {

get (x);
case (x) {

v1: B1;
…
vn: Bn;

}
} until (x==“Q”)
…

…

x!=“Q”
x==“Q”

…

How many computational paths? (3)

get

B1

ε

x==v1

Bn

x==vn

B2 …

…

x!=“Q”
x==“Q”

…

Suppose: in1; in2;… “Q”

m-inputs

}

Number of
paths: nm

Example:
possible inputs = 10
session length = 20

paths = 100,000,000,000,000,000,000

6

How many computational paths? (4)

get

B1

ε

x==v1

Bn

x==vn

B2 …

…

x!=“Q”
x==“Q”

…

Example:
possible inputs = 10
session length = 20

code paths = 10

Impracticable to test functionality
taking into account all
possible states of the software

How many
code paths?

stru
ctural te

stin
g

How many paths?

For all but trivial programs even the number of
code paths can be impracticably large.

Hence the definitions of:
All du-paths

All edges

All nodes…

7

What happens when concurrency comes about?

…

…

…

…

…

sync

It is impracticable to
take the product
(all possible combinations)
of the graphs for each of
the concurrent programs

prog1 prog2

Concurrency states

…

…

…

…

…

sync

We abstract the internals
of each program,
focusing on

concurrency states

prog1 prog2

8

Example: dining philosophers

isDown

isUp

fork

philosopher
pickFLeft

eat

pickFRight

layFLeft

layFRight

think

Simple configuration
for the dining philosophers

isDown

isUppickFLeft

eat

pickFRight

layFLeft

layFRight

think

pickFLeft

eat

pickFRight

layFLeft

layFRight

think
isDown

isUpph1 ph2
fork2

fork1

9

Simple configuration
for the dining philosophers

isDown

isUppickFLeft

eat

pickFRight

layFLeft

layFRight

think

pickFLeft

eat

pickFRight

layFLeft

layFRight

think
isDown

isUpph1 ph2
fork2

fork1

Concurrency states
for the dining philosophers (1)

ph1 ph2fork2fork1

isDown isDown pickF1 pickF21

isUp isDown pickF2 pickF22

isUp isUp pickF1 layF29

isUp isUP layF1 pickF23

isDown isUp pickF1 pickF18

isUp isUp pickF2 pickF17

isDown isUp layF2 pickF24

isUp isDown pickF1 layF110

10

Concurrency states
for the dining philosophers (2)

1

2 8

9

7

10

3

4

Captures only th
e in

teractio
ns

Capturing all the concurrency states
of the dining philosophers (1)

1

2 8

9

7

10

11

1217

18

19

16

3

4

5

6 13

14

15

11

Capturing all the concurrency states
of the dining philosophers (2)

1

2 8

9

7

10

11

1217

18

19

16

3

4

5

6 13

14

15

ph2 waits while
ph1 goes for the forks

ph2 thinks while
ph1 goes for the forks

Definitions
for concurrency graphs

Concurrency history
is one sequence of concurrency states that can
be formed by walking through a path in the
concurrency graph

Proper concurrency history
is one finite concurrency history where all states
are distinct except, possibly, the last state in the
sequence

12

Coverage metrics
for concurrent programs (1)

All-cc-paths (S,P)
P is the set of all paths through the
concurrency graph

All-cc-proper-histories (S,P)
P contains the set of all finite proper
concurrency histories

A program S and a set P of paths
covered by a given test suite can be judged
against the following criteria:

Coverage metrics
for concurrent programs (2)

All-cc-edges (S,P)
for every edge E in the concurrency graph, there is
at least one path in P that contains E

All-cc-states (S,P)
for every concurrency state C in the concurrency
graph, there is at least one path in P where C occurs

All-cc-interactions (S,P)
for every concurrency state C that involves an
interaction between tasks, there is at least one path
in P where C occurs

13

Coverage metrics
subsumption hierarchy

All-cc-paths

All-cc-proper-histories

All-cc-edges

All-cc-states

All-cc-interactions

Coverage metrics
in practice

As hinted by the complete concurrency graph for the
simple dinning philosophers example, non-trivial systems
will have very large concurrency graphs.

Rather than explicitly building the concurrency graph for
the whole system, the number of concurrency nodes and
edges can be estimated based on the graphs for the
individual components.

see Structural Testing of Concurrent Programs, Richard Taylor et al,
IEEE Transactions on Software Engineering, Vol. 18, No. 3, 1992.

14

Coverage metrics
how to obtain them?

Apply a (automatic) code transformation,
introducing instrumentation in concurrency
states
Modify the OS scheduler so to gather
information related with concurrency states

Tools give us a percentage of coverage
relative to a criteria.
There are two approaches for that:

Cost-benefit of testing (1)

test coverage

defects
found

test coverage

defects
shipped

15

Cost-benefit of testing (2)

test coverage test coverage

Cost of
testing

Cost of
defects

shipped

critical
software

Cost-benefit of testing (3)

test coverage

$

test up to here

