Lecture 14 (Testing Metrics)

Analysis of Software Artifacts
Somesh Jha

Testing Terminology

e white box testing: tester has access to
the code

e black box testing: tester does not have
access to the code

e black box testing is usetul for testing COTS
based systems

Specification Based Testing

e let [be the input domain
e let O be the output domain

e o test-suite 1s a finite set of values from the
set [

o let 21, -+ ,1;. be a test-suite of £k values

Specification Based Testing

e run the program on inputs 21, - - -, 11
e check the output with the expected outputs

e expected outputs derived from the
specification

How to Derive Tests

e use specifications

e partition the mput domain /I into classes
e system behaves the same on each class

e pick atleast one input from each class

e known as partition testing

Random Testing

e sample input domain I randomly

e big debate on which 1s better

— partition testing

—random testing

e probably should use a combination

Other Forms of Testing

e boundary Testing: check exceptional
conditions

o cxample: start the client process without
starting the server

e load Testing: check how the system
performs under exceptional load

o cxample: load a web-server with unusual
traflic of transactions

Paper

e 5.A. Rapps and E.J. Weyuker, Selecting
Software Test Data Using Data Flow
Information, IEEE Transactions on
Software Engineering, Vol SE-11, No-4,
April 1985.

Program as Graph

e We will view a program as a directed graph.

e Fach node of the graph represents a basic

block.

e Fach edge of the graph represents a
conditional, 1.e., control flow.

o A basic block 1s a sequence of statements
such that:

— can only enter the basic block through the
first statement.

— can only leave the basic block after
executing the last statement.

Classifying variable occurrence

e Definition (denoted as def)

Variable 1s defined here, e.g., assignment or
a read statement.

e Use for computation (denoted by c-use)
Use the variable for computation, e.g.. in an
expression or print statement.

e Use for control flow (denoted by p-use)
Use variable in the condition of an if
statement.

e Fach variable occurrence in the program is
classified according to the criteria given
above.

10

Definitions

e A path 1s a finite sequence of nodes

(ng,---,ng) such that there is an edge from

e A path 1s stmple if all nodes, except
possibly the first and the last, are distinct.

o A path is loop-free if all nodes are distinct.

e A complete path is a path whose nitial
node 1s the start node and whose final node
1s the exit node.

11

Definitions (Contd)

e A c-use of variable x 1s a global c-use
provided that there 1s no def of x preceding
the c-use within the block which 1t occurs.

o A path (¢, ny, -+, nm,7) from 2 to j is a
def-clear path wrt x iff ny,-- -, ny,, contain

no defs of x.
Note: wrt to 1s an abbreviation for with

respect to.

o A path (¢, ny, -+, nm, 7, k) is called a
def-clear path wrt x from node ¢ to edge
(7, k) if nodes (ny, -+, nym, J) contain no

defs of x.

12

Definitions (Contd)

e A def of variable in node 7 1s called a
global def if its the last def of x occurring in
the block associated with node 2 and

—there 1s a def-clear path wrt x to node
containing a global c-use of x or

—to an edge containing a p-use of .

o Intuitively, a det i1s called global iff that
definition can be used outside that basic

block.

o A def that is not global is called a local def.

13

Definitions

e Assume that there 1s some path from start
node to every global c-use or p-use of a
variable which contains a def of that
variable.

e def(i) is the set of variables for which node i
contains a global def.

e c-use(1) is the set of variables for which
node 7 contains a global c-use.

e p-use(i,7) 1s the set of variables for which
edge (¢, 7) contains a p-use.

14

Definitions

o dcu(x,1) is the set of all nodes j such that
x € c-use(j) and for which there is a
det-clear path wrt x from 2 to j.

o dpu(x,1) is the set of all edges (7, k) such

that x € p-use(j,k) and for which there is a
def-clear path wrt x from ¢ to edge (7, k).

15

Definitions

o A path (ny,---,n;,ng) is a du-path wrt x
1f n1 has a global def of x and either:
—ny, has a c-use of x and (nq,---,n;,ny) is
a def-clear simple path wrt x
—(nj,ny) has a p-use of z and (ny,---,n;)
1s a def-clear loop-free path wrt x.

16

Computing dcu(z,i)

o First we compute def-clear(z,i), i.e., the set
of nodes which have a def-clear path wrt x
from node 2.

e Use fix-point equations. Let DC(x,1)
contain the node 7 nitially.

17

Cpmputing dcu(z,i) (Contd)

o Let DU(x) be the set of nodes that have a
definition of x in 1t. Can compute this by
just looking at the graph of the program.

e Update DC(x,1) using the expression given
below:

DC(z,1)Usucc(DC(z,1) — DU(x))

e Fixplain the equation given above.

e When the equations given above reach a
fix-point the DC/(x,i) is equal to
def-clear(z,1).

18

Computing dcu(z,i) (Contd)

o Let c-use(x) be the set of nodes that have a
c-use of .

o [claim that dcu(z,i) is given by the
following expression:

c-use(x) N def-clear(x,i)
o Why?"

e Computation of dpu(x,i)is analogous. We
keep track of edges rather than nodes.

19

Sample Program

read X,y
y>=0 y<0

pow=0

7 | y>=0
answer=z+1

pow=pow-1

Figure 1: Sample Program

20

Sample Program (Contd)

e Compute dcu(pow,3) and dpu(pow,3).

e Compute dcu(pow,6) and dpu(pow,6).

21

Path Selection

e Let G be the def/use graph of a program.
We turn a program graph into a def/use
eraph by associating the usage information
det, c-use with nodes and p-use with edges.

e Goal: To select a set of complete paths P
through the graph satistying certain criteria.

22

Path Selection (Contd)

e All-nodes
P satisfies the all-nodes it every node of G
1s included 1n P.

o All-edges
P satisties the all-edges it every edge of G is
included i P.

23

Path Selection (Contd)

o All-defs
P satisfies the all-defs criterion if for every
node ¢ of G and every x € def(7), P
includes a def-clear path wrt x from 1 to
some element of dcu(x,i) and dpu(x,1).

o All-p-uses
P satisfies the all-p-uses criterion if for
every node ¢ of G and every x € def(z), P
includes a def-clear path wrt x from 1 to
some element of dpu(x,i).

24

Path Selection (Contd)

¢ All-c-uses/some-p-uses
P satisfies the all-c-uses/some-p-uses
criterion if for every node ¢ and every
x € def(1), P includes some def-clear path
wrt o from ¢ to every node in decu(x,i); if
dcu(x,1) 1s empty, then P must include a
det-clear path wrt x from ¢ to some edge
contained in dpu(x,i).
Intent: Checking every c-use of a variable
and checking a p-use if there are no c-uses.
Statements given precedence over
conditionals, 1.e., computation given
preference over control.

25

Path Selection (Contd)

¢ All-p-uses/some-c-uses
P satisfies the all-p-uses/some-c-uses
criterion if for every node ¢ and every
x € def(1), P includes some def-clear path
wrt o from ¢ to every node in dpu(x,i); if
dpu(x,1) is empty, then P must include a
det-clear path wrt x from ¢ to some edge
contained in decu(x,1).
Intent: Conditionals given preference over
statements.

26

Path Selection (Contd)

o All-uses
P satisfies the all-uses criterion if for every
node ¢ and every x € def(i), P includes a
det-clear path wrt x from ¢ to all elements of
dcu(x,1) and to all elements of dpu(x,1).
Intent: Checks all possible uses of a
variable x. Very expensive.

27

Path Selection (Contd)

e All-du-paths
P satisfies the all-du-paths criterion it for
every node ¢ and every x € def(z), P
includes every du-path with respect to x.
Intent: Checking every possible use of a
variable x. Very expensive path selection
criteria.

e All-paths
P satisfies the all-paths criterion it P
includes every complete path of G. In
general, 1s this feasible?

28

Other Kind of analysis

e Fndless loop
An endless loop is a path (ng,---,nyg), for
k > 1 and ny = ng, such that none of the
blocks represented by the nodes on the path
contain a conditional transfer statement
whose target 1s either in a block which 1s not
on the path or i1s a halt statement.

o Using but no definition
A def-clear path from the start node to a
use of variable x is a possible error/anamoly.
Might be using a variable before defining it.

29

