
Daniel Jackson
Lab for Computer Science
MIT

6170 · laboratory in software engineering

lecture 12 · march 1, 1999 · object models

dnj ·12/8/99 · 2

contents

motivation
· why have design notations?
· why object modelling?

elements of an OM
· sets, domains and subsets
· relations & multiplicity
· mutability

from design to code
· how design & code OMs differ

dnj ·12/8/99 · 3

why have design notations?

design stage
· help articulate ideas
· find problems early
· exploit idioms

implementation stage
· clear basis for delegation & division of labour
· touchstone for lower-levels of design

later stages
· hard to debug or maintain without design

dnj ·12/8/99 · 4

what kind of design notations?

criteria
· expressive: can capture essence
· abstract: can suppress irrelevant details
· precise: unambiguous, can analyze
· lightweight: economical & easy to use

two key notations
· object models

structure of state
· module dependency diagrams

code organization, coupling

other notations
· state machines

structure of events & state sequences: good for reactive systems
· architectural sketches

process structure & communication paths

dnj ·12/8/99 · 5

object models (OMs)

why
· state structure is major source of complexity
· helps bridge gap between problem and solution

code state can be compared to problem state
· in OO languages, state structure is system structure

in industry
· OMs form basis of all current OO development methods

UML, Catalysis, Fusion, Syntropy, OMT
· UML has been made an industrial standard

see <http://www.rational.com/uml>

our notation
· Alloy, an OM language developed at MIT
· a clarified version of UML’s “static structure notation”
· simpler than UML, but analyzable & more precise

dnj ·12/8/99 · 6

exactly how do OMs help?

in design, OMs help you figure out
· what information system must retain

what state components are needed
how these fit together

· which constraints you can exploit
to simplify implementation

in coding, OMs tell you
· where to use containers

sets, tables, etc
· about sharing and mutability

when to watch for aliasing & rep exposure

dnj ·12/8/99 · 7

design OM

a design OM is a graph
· nodes are sets of objects
· arcs are relations or subset relationships
· two kinds of markings: multiplicity & mutability

a design OM describes
· what system states are possible
· basic temporal properties (mutability)

examples
· family tree: state is information about a family
· file system: state is structure of files, dirs & links
· employment database: state is employment & recommendation records

dnj ·12/8/99 · 8

family tree example

Person

Man Woman

Date

Married

wife(~husband)

dob* * !

? ?

parent

Name
name

!

?

dnj ·12/8/99 · 9

file system example

!

*

FSObject

Dir File

Root! Link

to

contains
*

?

dnj ·12/8/99 · 10

employment database example

Person

Employee Organization

Company Agency

worksfor

recommends

*

*

* +

dnj ·12/8/99 · 11

sets, domains & subset

sets
· a box represents a set of objects
· objects are structureless entities: no state is “contained”

subset
· closed arrow denotes subset
· can read subset as “is-a”: a Man is-a Person

domains
· sets without supersets are called domains
· domains are disjoint: no object is both a Person and a Date

examples, with domains underlines
· family: Person, Date, Name, Married, Man, Woman
· file system: FSObject, File, Dir, Link, Root
· employment DB: Person, Organization, Employee, Agency, Company

dnj ·12/8/99 · 12

disjoint subsets & partitions

shared subset arrows
· say that subsets are disjoint

no Person is both a Man and a Woman
no FSObject is both a File and a Dir
no Organization is a Company and an Agency
but Person may be both Married and a Man

· when arrowhead is filled, subsets are exclusive too
every Person is a Man or a Woman
every FSObject is a File or a Dir

domains
· are implicitly disjoint

dnj ·12/8/99 · 13

relations

relations
· arc with open arrow denotes a relation
· a relation is a mapping (ie, a set of pairs)

relation r: S -> T contains pairs (x, y) with x in S and y in T

examples
· parents maps x to y when Person x has parent Person y
· wife maps x to y when Man x has wife Woman y
· to maps x to y when Link x points to the FSObject y
· recommends maps x to y when Person x recommends Person y

transpose
· the label p(~q) introduces two relations; second is transpose of first
· wife(~husband): wife maps x to y when husband maps y to x

dnj ·12/8/99 · 14

notes about relations

non-disjoint sets
· relations don’t just map elements of sets with arrows
· wife maps objects in Married, even though arrow is from Man to Woman

since Man and Married are not necessarily disjoint

what relations don’t say
· anything about references in objects
· anything about direction of navigation

direction is just for semantics: a Dir contains FSObjects
but could do other way round: an FSObject inside a Dir

dnj ·12/8/99 · 15

multiplicity

how many?
· instances of a set?
· instances mapped by a relation?

multiplicity markings
· + means one or more
· * means zero or more
· ! means exactly 1
· ? means zero or 1
· omission equivalent to *

which way round?
· A * -> ! B means

each A is mapped to one B
each B is mapped to by zero or more A’s

can use for sets too
· Root! is a set of Dirs with one element (ie, there’s only one file system root)

dnj ·12/8/99 · 16

multiplicity examples

family
· each Person has zero or more parents
· each Man has zero or one wife

file system
· each Link points to exactly one FSObject
· each Dir contains zero or more FSObjects

employment DB
· each Employee works for one or more Organizations

dnj ·12/8/99 · 17

constraints

some constraints
· can’t be expressed graphically
· just express in text, informally

examples
· family

a Man with a wife is Married
x has wife y -> x.parents and y.parents are disjoint
nobody is their own parent

· employment database
no Employee works for an Agency and a Company
no self-recommendations
every Employee has a recommender

· file system
no Dir contains Root

dnj ·12/8/99 · 18

snapshot semantics

an OM denotes
· a set of snapshots, usually infinite

snapshot is graph
· nodes are objects

marked with names of sets they belong too
(can omit superset when one of its subsets is included)

· arcs are pairs in a relation
labelled with name of relation

dnj ·12/8/99 · 19

sample snapshots: family

good

bad

(Man,
Married)

(Woman,
Married)

Date

dob dob

wife
husband

Name Name

name name

(Man,
Married)

(Man,
Married)

Date

dob dob

wife husband
Woman,
Married

Name

name name

dnj ·12/8/99 · 20

sample snapshots: file system

good

bad

Root

Root Dirto

containscontains

Root

Dir Linkto

containscontains

dnj ·12/8/99 · 21

sample snapshots: employment db

good

bad

Person

Employee

Employee

Company

Company

recommends

recommends

worksfor

worksfor

worksfor

Company

Company Employee

Employee Company

recommends

worksfor

dnj ·12/8/99 · 22

mutability

what it’s about
· very useful to say what can change
· rather a subtle notion

not often useful to say a set or relation doesn’t change
this prohibits new objects from coming into existence!

two useful kinds of constraint
· no change to classification of an object
· no change to which objects an object maps to

static sets (shown with vertical stripe)
· a set S is static when

an existing object can’t move in and out of the set

static relations (shown with hatch on line end)
· for relation r from A to B
· left static (hatch on A end): each B, during its life, is mapped to by same A’s
· right static (hatch on B end): each A, during its life, maps to same B’s

dnj ·12/8/99 · 23

examples of mutability

family
· Man, Woman static (no sex change)
· Married not static (divorce)
· dob is right-static: can’t change your date of birth

file system
· File, Dir, Link are all static (a file can’t become a directory)
· to is right-static (what a given link points to is fixed)

employment db
· Employee is not static (can get a job)
· Agency is static (govt agency can’t become a Company)

dnj ·12/8/99 · 24

fixed sets

very occasionally
· might want to describe a set that doesn’t change

then it’s fixed
· shown with vertical stripes on both sides of box

examples
· in file system, Root is fixed: can’t change which object is the root
· in card game program, Suit would be fixed

dnj ·12/8/99 · 25

notes on design OMs

what’s abstracted away
· localization of state

no instance vars, references etc
all state is global, in relations and subsets

· navigation issues
direction of relation does not imply navigability
no notion of “root” object from which navigations start

· PL notions: subclasses vs. interfaces, methods, etc.

OMs are tricky!
· often embody careful judgments
· family example:

dob right static? not if system must allow corrections
every Married Man has a wife? not if program allows incomplete info
at most one parent who’s a Man? not if step & adoption handled

dnj ·12/8/99 · 26

code OMs

same syntax, but read more into it
· sets are classes or interfaces
· subset is extends or implements
· relations are references

but many choices
· about how state is represented
· affect performance, ease of coding, flexibility

dnj ·12/8/99 · 27

code OM for family (1)

representation choices
· wife, husband: as one field spouse
· parents: in transpose, as vector field children
· Married, Man, Woman: as boolean fields of Person
· top-most class has instance variable that holds Person at root of family tree

Person Date

String
spouse

children

dob

name

?

? !

!

dnj ·12/8/99 · 28

code OM for family (2)

representation choices
· name: as PersonTable
· dob/Date: as dd/mm/yy int fields
· parents: as array[string] field

Person
Table!

String Person

Man Woman
husband

wife

parents

names persons

? ?

? ?

dnj ·12/8/99 · 29

from design OM to code OM

ways to represent a relation
· directly or in transpose (ie. reversed), as a field
· as a separate table object

ways to represent a set
· as a concrete or abstract class, or as an interface
· as a boolean field
· as a separate set object

other changes
· adding redundancy for extra paths

consequence of mutability
· a static set can become a subtype
· a set whose relations are all right-static can become immutable

dnj ·12/8/99 · 30

polymorphism in code OMs

polymorphism
· some classes are polymorphic
· can be used in different ways
· eg, hashtable can be used for different relations
· add clarity to OM by representing with separate boxes

example
· in PS2/3

Table(1): from City to Table(2)
Table(2): from City to Float

dnj ·12/8/99 · 31

OM for PS2/3

Distance
Chart

Table(1)

Weighted
Digraph

City Float

Vector(1)

Pair(1)

Table(2)

Vector(2)

Pair(2)

dnj ·12/8/99 · 32

another OM for PS 2/3

Distance
Chart

City

Table(1)

Table(2)

Float

table

keys vals

keys vals

Weighted
Digraph

graph

!

!

?

!

!
notes

· same rep
· this OM elides some rep details
· also shows multiplicity and mutability

dnj ·12/8/99 · 33

summary

OM gives
· an invariant on the state space

which states are permissible
state is like a venn diagram with relations

· basic constraints about how state changes
mutability markings

OM is
· abstract but precise
· invaluable in early stages of design
· useful later for understanding runtime structures
· programming language independent

