6170 - laboratory in software engineering
lecture 12 - march 1, 1999 - object models

Daniel Jackson

Lab for Computer Science
MIT



contents

motivation
- why have design notations?
- why object modelling?

elements of an OM
- sets, domains and subsets
- relations & multiplicity
- mutability

from design to code
- how design & code OMs differ

dnj-12/8/99 - 2



why have design notations?

design stage
- help articulate ideas
- find problems early
- exploit idioms

implementation stage
- clear basis for delegation & division of labour
- touchstone for lower-levels of design

later stages
- hard to debug or maintain without design

dnj-12/8/99 - 3



what kind of design notations?

Criteria
- expressive: can capture essence
- abstract: can suppress irrelevant details
- precise: unambiguous, can analyze
- lightweight: economical & easy to use

two key notations
- object models
structure of state
- module dependency diagrams
code organization, coupling

other notations
- state machines
structure of events & state sequences: good for reactive systems
- architectural sketches
process structure & communication paths

dnj-12/8/99 - 4



object models (OMs)

why
- state structure is major source of complexity
- helps bridge gap between problem and solution
code state can be compared to problem state
- in OO languages, state structure is system structure

in industry
- OMs form basis of all current OO development methods
UML, Catalysis, Fusion, Syntropy, OMT
- UML has been made an industrial standard
see <http://www.rational.com/uml>

our notation
- Alloy, an OM language developed at MIT
- a clarified version of UML's “static structure notation”
- simpler than UML, but analyzable & more precise

dnj-12/8/99 - 5



exactly how do OMs help?

in design, OMs help you figure out
- what information system must retain
what state components are needed
how these fit together
- which constraints you can exploit
to simplify implementation

in coding, OMs tell you
- where to use containers
sets, tables, etc
- about sharing and mutability
when to watch for aliasing & rep exposure

dnj-12/8/99 - 6



design OM

adesign OM s a graph
- nodes are sets of objects
- arcs are relations or subset relationships
- two kinds of markings: multiplicity & mutability

a design OM describes
- what system states are possible
- basic temporal properties (mutability)

examples
- family tree: state is information about a family
- file system: state is structure of files, dirs & links
- employment database: state is employment & recommendation records

dnj-12/8/99 - 7



family tree example

Married

Man

Date

Name

?

Woman

?
Lwife(~husband)J

dnj-12/8/99- 8



file system example

*

contains

FSObject

L

?

Dir

Root!

Link

dnj-12/8/99- 9



employment database example

*

Person

B

recommends

|

Employee

+
~“worksfor— Organization

Company

Agency

dnj-12/8/99-10



sets, domains & subset

sets
- a box represents a set of objects
- objects are structureless entities: no state is “contained”

subset
- closed arrow denotes subset
- cah read subset as “is-a”: a Man is-a Person

domains
- sets without supersets are called domains
- domains are disjoint: no object is both a Person and a Date

examples, with domains underlines
- family: Person, Date, Name, Married, Man, Woman
- file system: FSObject, File, Dir, Link, Root
- employment DB: Person, Organization, Employee, Agency, Company

dnj-12/8/99 - 11



disjoint subsets & partitions

shared subset arrows

- say that subsets are disjoint
no Person is both a Man and a Woman
no FSObject is both a File and a Dir
no Organization is a Company and an Agency
but Person may be both Married and a Man

- when arrowhead is filled, subsets are exclusive too
every Person is a Man or a Woman
every FSObject is a File or a Dir

domains
- are implicitly disjoint

dnj-12/8/99 - 12



relations

relations
- arc with open arrow denotes a relation
- a relation is a mapping (ie, a set of pairs)
relation r: S -> T contains pairs (x, y) withxinSandyinT

examples
- parents maps x to y when Person x has parent Persony
- wife maps x to y when Man x has wife Woman 'y
- to maps x to y when Link x points to the FSObject y
- recommends maps x to y when Person x recommends Persony

transpose
- the label p(~q) introduces two relations; second is transpose of first
- wife(~husband): wife maps x to y when husband maps y to x

dnj-12/8/99- 13



notes about relations

non-disjoint sets
- relations don’t just map elements of sets with arrows
- wife maps objects in Married, even though arrow is from Man to Woman
since Man and Married are not necessarily disjoint

what relations don’t say
- anything about references in objects
- anything about direction of navigation
direction is just for semantics: a Dir contains FSObjects
but could do other way round: an FSObject inside a Dir

dnj-12/8/99 - 14



multiplicity

how many?
- instances of a set?
- instances mapped by a relation?

multiplicity markings
-+ means one or more
- ¥ means zero or more
-1 means exactly 1
-7 meanszeroor 1
- omission equivalent to *

which way round?
-A*->1B means
each A is mapped to one B
each B is mapped to by zero or more A’s

can use for sets too
- Root! is a set of Dirs with one element (ie, there’s only one file system root)

dnj-12/8/99- 15



multiplicity examples

family
- each Person has zero or more parents
- each Man has zero or one wife

file system
- each Link points to exactly one FSObject
- each Dir contains zero or more FSObjects

employment DB
- each Employee works for one or more Organizations

dnj-12/8/99- 16



constraints

some constraints
- can’t be expressed graphically
- just express in text, informally

examples

- family
a Man with a wife is Married
x has wife y -> x.parents and y.parents are disjoint
nobody is their own parent

- employment database
no Employee works for an Agency and a Company
no self-recommendations
every Employee has a recommender

- file system
no Dir contains Root

dnj-12/8/99 - 17



snapshot semantics

an OM denotes
- a set of snapshots, usually infinite

snapshot is graph
- nodes are objects
marked with names of sets they belong too
(can omit superset when one of its subsets is included)
- arcs are pairs in a relation
labelled with name of relation

dnj-12/8/99- 18



sample snapshots: family

good

name name

(Man, wife Woman,
Married) <-husband— Married

1

bad

oman,
husband

dnj-12/8/99- 19



sample snapshots: file system

good
contains contains
Cor e
bad

contains contains

o e o

dnj-12/8/99 - 20



sample snapshots: employment db

good

Employee Worksforp -

recommends

worksfor
recommends
Employee Worksfor

recommends Employee
Employee worksfor @

bad

dnj-12/8/99 - 21



mutability

what it’s about
- very useful to say what can change
- rather a subtle notion
not often useful to say a set or relation doesn’t change
this prohibits new objects from coming into existence!

two useful kinds of constraint
- no change to classification of an object
- no change to which objects an object maps to

static sets (shown with vertical stripe)
- asetSis static when
an existing object can’t move in and out of the set

static relations (shown with hatch on line end)
- for relation r from Ato B
- left static (hatch on A end): each B, during its life, is mapped to by same A’s
- right static (hatch on B end): each A, during its life, maps to same B’s

dnj-12/8/99 - 22



examples of mutability

family
- Man, Woman static (no sex change)
- Married not static (divorce)
- dob is right-static: can’'t change your date of birth

file system
- File, Dir, Link are all static (a file can’t become a directory)
- to is right-static (what a given link points to is fixed)

employment db
- Employee is not static (can get a job)
- Agency is static (govt agency can’t become a Company)

dnj-12/8/99- 23



fixed sets

very occasionally
- might want to describe a set that doesn’t change
then it's fixed
- shown with vertical stripes on both sides of box

examples
- in file system, Root is fixed: can’t change which object is the root
- in card game program, Suit would be fixed

dnj-12/8/99 - 24



notes on design OMs

what'’s abstracted away
- localization of state
no instance vars, references etc
all state is global, in relations and subsets
- havigation issues
direction of relation does not imply navigability
no notion of “root” object from which navigations start
- PL notions: subclasses vs. interfaces, methods, etc.

OM:s are tricky!
- often embody careful judgments
- family example:
dob right static? not if system must allow corrections
every Married Man has a wife? not if program allows incomplete info
at most one parent who's a Man? not if step & adoption handled

dnj-12/8/99- 25



code OMs

same syntax, but read more into it
- sets are classes or interfaces
- subset is extends or implements
- relations are references

but many choices
- about how state is represented
- affect performance, ease of coding, flexibility

dnj-12/8/99 - 26



code OM for family (1)

representation choices
- wife, husband: as one field spouse

- parents: in transpose, as vector field children
- Married, Man, Woman: as boolean fields of Person

- top-most class has instance variable that holds Person at root of family tree

childrenw

7l Person

T

spouse—— !

dob—

| Date

String

dnj-12/8/99 - 27



code OM for family (2)

representation choices
- name: as PersonTable
- dob/Date: as dd/mm/yy int fields
- parents: as array[string] field

Woman

Person
Table!
namesJ Lpersons
| L
String <—parents— Person
I N
Man husbgnd
wife

?

dnj-12/8/99 - 28



from design OM to code OM

ways to represent a relation
- directly or in transpose (ie. reversed), as a field
- as a separate table object

ways to represent a set
- as a concrete or abstract class, or as an interface
- as a boolean field
- as a separate set object

other changes
- adding redundancy for extra paths

consequence of mutability
- a static set can become a subtype
- a set whose relations are all right-static can become immutable

dnj-12/8/99 - 29



polymorphism in code OMs

polymorphism
- some classes are polymorphic
- can be used in different ways
- eg, hashtable can be used for different relations
- add clarity to OM by representing with separate boxes

example
- in PS2/3
Table(1): from City to Table(2)
Table(2): from City to Float

dnj-12/8/99- 30



OM for PS2/3

Distance
Chart

Weighted
Digraph

Table(1)

Vector(1)

Pair(1)

City

%

Table(2)

Vector(2)

Pair(2)

Float

dnj-12/8/99 - 31



another OM for PS 2/3

notes
- same rep
- this OM elides some rep details

- also shows multiplicity and mutability

(

Distance
Chart

graph
!

Weighted
Digraph

table

Table(1)

City

kest \?—vals

keysQ Lvals

:

Table(2)

R

Float

dnj-12/8/99 - 32



summary

OM gives
- an invariant on the state space
which states are permissible
state is like a venn diagram with relations
- basic constraints about how state changes
mutability markings

OMis
- abstract but precise
- invaluable in early stages of design
- useful later for understanding runtime structures
- programming language independent

dnj-12/8/99- 33



