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why have design notations?

design stage
· help articulate ideas
· find problems early
· exploit idioms

implementation stage
· clear basis for delegation & division of labour
· touchstone for lower-levels of design

later stages
· hard to debug or maintain without design
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what kind of design notations?

criteria
· expressive: can capture essence
· abstract: can suppress irrelevant details
· precise: unambiguous, can analyze
· lightweight: economical & easy to use

two key notations
· object models

structure of state
· module dependency diagrams

code organization, coupling

other notations
· state machines

structure of events & state sequences: good for reactive systems
· architectural sketches

process structure & communication paths
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object models (OMs)

why
· state structure is major source of complexity
· helps bridge gap between problem and solution

code state can be compared to problem state
· in OO languages, state structure is system structure

in industry
· OMs form basis of all current OO development methods

UML, Catalysis, Fusion, Syntropy, OMT
· UML has been made an industrial standard

see <http://www.rational.com/uml>

our notation
· Alloy, an OM language developed at MIT
· a clarified version of UML’s “static structure notation”
· simpler than UML, but analyzable & more precise
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exactly how do OMs help?

in design, OMs help you figure out
· what information system must retain

what state components are needed
how these fit together

· which constraints you can exploit
to simplify implementation

in coding, OMs tell you
· where to use containers

sets, tables, etc
· about sharing and mutability

when to watch for aliasing & rep exposure
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design OM

a design OM is a graph
· nodes are sets of objects
· arcs are relations or subset relationships
· two kinds of markings: multiplicity & mutability

a design OM describes
· what system states are possible
· basic temporal properties (mutability)

examples
· family tree: state is information about a family
· file system: state is structure of files, dirs & links
· employment database: state is employment & recommendation records
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family tree example

Person

Man Woman

Date

Married

wife(~husband)

dob* * !

? ?

parent

Name
name

!

?
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file system example

!

*

FSObject

Dir File

Root! Link

to

contains
*

?
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employment database example

Person

Employee Organization

Company Agency

worksfor

recommends

*

*

* +
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sets, domains & subset

sets
· a box represents a set of objects
· objects are structureless entities: no state is “contained”

subset
· closed arrow denotes subset
· can read subset as “is-a”: a Man is-a Person

domains
· sets without supersets are called domains
· domains are disjoint: no object is both a Person and a Date

examples, with domains underlines
· family: Person, Date, Name, Married, Man, Woman
· file system: FSObject, File, Dir, Link, Root
· employment DB: Person, Organization, Employee, Agency, Company
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disjoint subsets & partitions

shared subset arrows
· say that subsets are disjoint

no Person is both a Man and a Woman
no FSObject is both a File and a Dir
no Organization is a Company and an Agency
but Person may be both Married and a Man

· when arrowhead is filled, subsets are exclusive too
every Person is a Man or a Woman
every FSObject is a File or a Dir

domains
· are implicitly disjoint
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relations

relations
· arc with open arrow denotes a relation
· a relation is a mapping (ie, a set of pairs)

relation r: S -> T contains pairs (x, y) with x in S and y in T

examples
· parents maps x to y when Person x has parent Person y
· wife maps x to y when Man x has wife Woman y
· to maps x to y when Link x points to the FSObject y
· recommends maps x to y when Person x recommends Person y

transpose
· the label p(~q) introduces two relations; second is transpose of first
· wife(~husband): wife maps x to y when husband maps y to x
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notes about relations

non-disjoint sets
· relations don’t just map elements of sets with arrows
· wife maps objects in Married, even though arrow is from Man to Woman

since Man and Married are not necessarily disjoint

what relations don’t say
· anything about references in objects
· anything about direction of navigation

direction is just for semantics: a Dir contains FSObjects
but could do other way round: an FSObject inside a Dir
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multiplicity

how many?
· instances of a set?
· instances mapped by a relation?

multiplicity markings
· + means one or more
· * means zero or more
· ! means exactly 1
· ? means zero or 1
· omission equivalent to *

which way round?
· A * -> ! B means

each A is mapped to one B
each B is mapped to by zero or more A’s

can use for sets too
· Root! is a set of Dirs with one element (ie, there’s only one file system root)
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multiplicity examples

family
· each Person has zero or more parents
· each Man has zero or one wife

file system
· each Link points to exactly one FSObject
· each Dir contains zero or more FSObjects

employment DB
· each Employee works for one or more Organizations
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constraints

some constraints
· can’t be expressed graphically
· just express in text, informally

examples
· family

a Man with a wife is Married
x has wife y -> x.parents and y.parents are disjoint
nobody is their own parent

· employment database
no Employee works for an Agency and a Company
no self-recommendations
every Employee has a recommender

· file system
no Dir contains Root
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snapshot semantics

an OM denotes
· a set of snapshots, usually infinite

snapshot is graph
· nodes are objects

marked with names of sets they belong too
(can omit superset when one of its subsets is included)

· arcs are pairs in a relation
labelled with name of relation
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sample snapshots: family

good

bad

(Man,
Married)

(Woman,
Married)

Date

dob dob

wife
husband

Name Name

name name

(Man,
Married)

(Man,
Married)

Date

dob dob

wife husband
Woman,
Married

Name

name name
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sample snapshots: file system

good

bad

Root

Root Dirto

containscontains

Root

Dir Linkto

containscontains
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sample snapshots: employment db

good

bad

Person

Employee

Employee

Company

Company

recommends

recommends

worksfor

worksfor

worksfor

Company

Company Employee

Employee Company

recommends

worksfor
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mutability

what it’s about
· very useful to say what can change
· rather a subtle notion

not often useful to say a set or relation doesn’t change
this prohibits new objects from coming into existence!

two useful kinds of constraint
· no change to classification of an object
· no change to which objects an object maps to

static sets (shown with vertical stripe)
· a set S is static when

an existing object can’t move in and out of the set

static relations (shown with hatch on line end)
· for relation r from A to B
· left static (hatch on A end): each B, during its life, is mapped to by same A’s
· right static (hatch on B end): each A, during its life, maps to same B’s
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examples of mutability

family
· Man, Woman static (no sex change)
· Married not static (divorce)
· dob is right-static: can’t change your date of birth

file system
· File, Dir, Link are all static (a file can’t become a directory)
· to is right-static (what a given link points to is fixed)

employment db
· Employee is not static (can get a job)
· Agency is static (govt agency can’t become a Company)
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fixed sets

very occasionally
· might want to describe a set that doesn’t change

then it’s fixed
· shown with vertical stripes on both sides of box

examples
· in file system, Root is fixed: can’t change which object is the root
· in card game program, Suit would be fixed
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notes on design OMs

what’s abstracted away
· localization of state

no instance vars, references etc
all state is global, in relations and subsets

· navigation issues
direction of relation does not imply navigability
no notion of “root” object from which navigations start

· PL notions: subclasses vs. interfaces, methods, etc.

OMs are tricky!
· often embody careful judgments
· family example:

dob right static? not if system must allow corrections
every Married Man has a wife? not if program allows incomplete info
at most one parent who’s a Man? not if step & adoption handled
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code OMs

same syntax, but read more into it
· sets are classes or interfaces
· subset is extends or implements
· relations are references

but many choices
· about how state is represented
· affect performance, ease of coding, flexibility
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code OM for family (1)

representation choices
· wife, husband: as one field spouse
· parents: in transpose, as vector field children
· Married, Man, Woman: as boolean fields of Person
· top-most class has instance variable that holds Person at root of family tree

Person Date

String
spouse

children

dob

name

?

? !

!
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code OM for family (2)

representation choices
· name: as PersonTable
· dob/Date: as dd/mm/yy int fields
· parents:  as array[string] field

Person
Table!

String Person

Man Woman
husband

wife

parents

names persons

? ?

? ?
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from design OM to code OM

ways to represent a relation
· directly or in transpose (ie. reversed), as a field
· as a separate table object

ways to represent a set
· as a concrete or abstract class, or as an interface
· as a boolean field
· as a separate set object

other changes
· adding redundancy for extra paths

consequence of mutability
· a static set can become a subtype
· a set whose relations are all right-static can become immutable
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polymorphism in code OMs

polymorphism
· some classes are polymorphic
· can be used in different ways
· eg, hashtable can be used for different relations
· add clarity to OM by representing with separate boxes

example
· in PS2/3

Table(1): from City to Table(2)
Table(2): from City to Float
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OM for PS2/3

Distance
Chart

Table(1)

Weighted
Digraph

City Float

Vector(1)

Pair(1)

Table(2)

Vector(2)

Pair(2)
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another OM for PS 2/3

Distance
Chart

City

Table(1)

Table(2)

Float

table

keys vals

keys vals

Weighted
Digraph

graph

!

!

?

!

!
notes

· same rep
· this OM elides some rep details
· also shows multiplicity and mutability
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summary

OM gives
· an invariant on the state space

which states are permissible
state is like a venn diagram with relations

· basic constraints about how state changes
mutability markings

OM is
· abstract but precise
· invaluable in early stages of design
· useful later for understanding runtime structures
· programming language independent


