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1. Introduction

The purpose of the Reliability Analysis report is to present an analysis of the probability that the MCNAV001 system will successfully complete the challenge.

1.1 Definitions

	Acronym
	Definition

	DARPA
	Defense Advanced Research Projects Agency

	MBARS
	Moon Based Autonomous Robot System

	MCNAV
	Moon Circum-Navigating Autonomous Vehicle

	FMECA
	Failure Mode, Effects and Criticality Analysis

	FTA
	Fault-Tree Analysis


2. System Overview

In order to accelerate technology development for a Moon Based Autonomous Robot System (MBARS), DARPA has initiated the Lunar Grand Challenge 2005. Carnegie Mellon University’s MCNAV Team (ESIS 2005 - 17614) has taken up the challenge to design a robot system according to DARPA contest. 

The challenge is to complete the race route, a total distance of approximately 2826 kilometers (referred to System Assumption) in the least amount of time. The course must be completed in no more than 7 days. The MCNAV must be capable of surviving these conditions and be able to adjust to unforeseen hazards on the lunar surface. 
3. System Reliability
The analysis techniques of interest in this report include FMECA and FTA.  Each of these is described in subsequent sections.
3.1 Failure Mode, Effects and Criticality Analysis [FMECA]
The FMECA is a technique that identifies weaknesses in a product or process. To complete this analysis, a Failure Mode, Effects and Criticality Analysis [FMECA] is as follows:
3.1.1 Define System Requirements

Describe the system in question, the expected outcomes, and the relevant technical performance measures [TPMs].

In order for the vehicle to accomplish the mission within the allowable time the vehicle must complete the course in at least 7 days.  Thus, the MFBF rating is 7 days or 168 hours.  This requirement becomes the technical performance measure [TPM] for correct system operation.  Due to the serial nature of the system, this TPM must be applied to every MCNAV subsystem.
3.1.2 Functional Analysis
Define the system in functional terms.

See the System and Software Architecture document for a description of the allocation of requirements to subsystems.
3.1.3 Requirements Allocation
Top-down breakout of system-level requirements.

See the System Capability Requirements & Qualification Method document for a description of the allocation of requirements to subsystems.
3.1.4 Failure Modes
An examination of the system block diagram illustrates the following possible failures:
· Chassis Failure = Loss of chassis integrity during challenge

· Power Failure = Loss of electrical power during challenge
· Mobility failure = Inability for vehicle to move across surface
· Navigation Failure = Inability for robot to compute route over lunar surface
· Environment Sensing Failure = Inability to sense the local environment within the vicinity of the lunar vehicle.

· Processing Failure = Inability of computing system to function
3.1.5 Causes of Failure
Analyze the product to determine the actual cause(s) responsible for failure.  An Ishikawa “cause-and-effect” diagram may prove to be effective.

The failure modes of the system are represented in a simplified representation of an Ishikawa (fish-bone) diagram as follows:

· Chassis Failure

· Due to vibration and shock during delivery to challenge site

· Due to vibration and shock according during operation
· Power Failure

· Due to exhausted fuel supply

· Due to a defect in one or more fuel pellets
· Due to manufacturing defect in generator

· Due to wiring connection failure

· Due to vibration & shock during delivery

· Due to vibration & shock during operation
· Mobility Failure

· Due to wheel axel failure

· Due to motor failure

· Due to manufacturing defect

· Due to vibration & shock during delivery

· Navigation Failure

· Due to environment sensing failure

· Due to loss of position estimation

· Due to loss of signal from Loran-C
· Due to loss of information from wheel encoders
· Due to wiring failure

· Due to vibration & shock during delivery

· Due to vibration & shock during operation

· Environment Sensing Failure

· Due to thermal control failure

· Due to wiring failure

· Due to vibration & shock during delivery

· Due to vibration & shock during operation

· Due to sensor failure

· Due to vibration & shock during delivery

· Due to vibration & shock during operation

· Due to manufacturing defect

· Processing Failure

· Due to thermal control failure

· Due to radiation damage

· Due to equipment fault
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Figure 3‑1 Ishikawa Cause & Effect [Fishbone] diagram

3.1.6 Failure Effects, Severity, Frequency, Detection Means and Probability
Consider the effect of the failure on other elements at same or higher level in the system, and from the system overall.  Identify the seriousness of the effect or impact of a particular failure.  Address the frequency of the occurrence of each individual failure mode.

The severity and frequency of the failures is indicated as follows:

	Value
	Severity
	Frequency

	1
	Minor
	Remote

	2-3
	Low
	Low

	4-6
	Moderate
	Moderate

	7-8
	High
	High

	9-10
	Very-high
	Very-high


Table 3‑1 Failure Severity and Frequency Values
Identify the process controls which may detect the failures.  What is the probability that process controls, design features, verification procedures, etc. detect the potential failures in time to prevent a major system catastrophe?
The severity and frequency of the failures is indicated as follows:

	Value
	Detection Probability

	1
	Very-high

	2-3
	High

	4-6
	Moderate

	7-8
	Low

	9
	Remote

	10
	Absolute certainty of non-detection


Table 3‑2 Failure Detection Probability Values
Identify the critical aspects of the system design in terms of severity, frequency and probability of detection, expressed as a risk priority number (RPN).

The criticality of the risks is expressed as a risk priority number (RPN), computed as:


[image: image2.wmf]y)

probabilit

tection 

rating)(de

equency 

rating)(fr

(severity 

RPN

=


A table summarizing the FCEMA analysis is provided in Table 3‑3 FMECA Summary
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Table 3‑3 FMECA Summary
3.1.7 Recommendation
Based on the above analysis, the following architectural features or additional process steps are recommended:

· The vehicle shall undergo shake testing prior to final delivery
· The vehicle shall undergo radiation exposure testing prior to final delivery

· The vehicle shall undergo temperature testing prior to final delivery
· The vehicle shall perform built-in-self tests prior to operation
· The computing system shall employ redundant watchdogs such that in the event that any one computing system fails, it shall be restarted.
· Multiple wheel motors shall be used in the vehicle design to ensure redundancy of locomotive ability

· Multiple wheel encoders shall be used for position estimation through odometry

· All sensitive electronic components shall be shielded from electromagnetic radiation
· All sensitive electronic components (particularly sensors) shall have temperature controls to ensure operation within sensor environmental limits

3.2 Reliability Prediction

Compare the predicted values of MTBM/MTBF against the requirements – looking for incompatibilities or areas for improvement.

We want a racer reliability of one in one hundred chance of racer failure during the race.  Assuming the racer takes the full 7 days (168 hour) to complete the course, this implies that the reliability (R) and the mean-time between failure (MTBF) for the racer is as follows
:
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This corresponds to nearly 2 years of continuous fault-free operation.

A chart illustrating various reliability rates is as follows:
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Note that even a 50% chance of winning requires that the racer be capable of operating for over 242 hours – which is nearly 1.5 times the duration of the challenge.

At a high level from the point of view of system reliability, the MCNAV001 system is represented as a series network of 5 components as follows:
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Figure 3‑2 MCNAV001 Reliability Block Diagram

Each of these subsystems represents a single point of failure.  Should any one component in the above series fail, then the lunar rover will not meet the challenge.  (Note: There are additional elements of the system, such as Chassis, are beyond the scope of this document, and are therefore not included in this analysis.)

Allocating the above reliability equally between the four components yields
:
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Thus each component must be able to operate continuously without fault for over 9.5 years.  If this is possible, then the system will have a 99 out of 100 chance of not failing during the 7 day mission.

Each of the subsystems have been analyzed, and then combined to get a picture of the reliability of the system as a whole.

3.2.1 Power Generation

3.2.2 Environment Sensing

3.2.3 Processing

3.2.4 Navigation

The navigation system reliability is composed of a positioning and a path planning component with a series network relationship, given that both components must operate properly for the correct system functioning. The path planning component is a single software component and the positioning component reliability is analyzed below. The navigation reliability is expressed as:
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Figure 3‑3-5-2 Navigation Reliability Block Diagram

3.2.4.1 Positioning

The positioning system consists of Odometry System and Loran-C receiver used in combination to reduce the error accumulation over the length of the race. Both systems provide positioning as parallel networks. Their positioning reliability is as:
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Figure 3‑3-5-1 Positioning Reliability Block Diagram

3.2.5 Mobility Locomotion

3.3 Fault-Tree Analysis [FTA]

Provide a graphical enumeration and analysis of different ways a failure can occur, with its probability of occurrence.

A summary of the fault tree analysis is as follows:
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Figure 3‑3 Fault Tree Analysis
Note: It is difficult in the FTA to avoid circular dependencies.

For example, A Processing failure may occur because of a power failure, because of a Power Management failure, because of a Processing failure.  Further, nearly all the systems rely on power, and processing (which is reliant on power).
� Systems Engineering and Analysis, Third Edition; Blanchard; © 1998 Prentice-Hall – page 347-348


� Systems Engineering and Analysis, Third Edition; Blanchard; © 1998 Prentice-Hall – page 353
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