	CMU 17-614
	Engineering Software Intensive Systems
	Summer 2005

	
	MCNAV001 Project
	

	Team Name: MACNAV
	Software Development Plan

 for MCNAV001Lunar Robot
	Due: 7/XX/05

MCNAV Software Development Plan (SDP)

Team MCNAV

	Carnegie Mellon University
	SDP
	Rev: 1.0

	17614 – Engineering Software Intensive Systems Carnegie Mellon University Summer ‘05

	DUE DATE:
	15 July, 2005

	TITLE:
	DARPA Lunar Grand Challenge 2005 – MCNAV001

	AUTHOR(s):
	Team MCNAV
	DATE:
	29 July, 2005

	ABSTRACT:
	This document describes the plan for the development of the software required for the MCNAV system, a competitor in the DARPA Lunar Grand Challenge 2005. The plan focuses on use/maintenance of COTS software, development and integration of new software, and maintenance of software. after launch.

Revision History

	Rev
	Date
	C. No.
	Author
	Change Comment

	V0
	07-05-2005
	1
	O. Sanchez
	Created template, Guislaine, Gurmit and Gary’s comments incorporated

	V1
	07-11-2005
	1
	O. Sanchez
	Modified organisation, and WBS with Sam’s comments

Complete section 8, 9 and 10

	V2
	07-15-2005
	1
	O. Sanchez, C. Wang, G. Hernandez
	Added Software packages & acquisition strategies Incomplete)

Added Pre-launch maintenance strategy

Remove Estimates + Reporting sections

	V3
	07-16-2005
	1
	O. Sanchez, C. Wang
	Added Iterations contents

*Added” post-launch maintenance strategy

	V3
	07-17-2005
	1
	G. Hernandez
	*Added” Navigation capabilities

	V4
	07-19-2005
	1
	G. Lotey
	Added SN&AS + comments

	V5
	07-23-3005
	1
	O. Sanchez
	Updated to harmonize to OCD, Requirements and Architecture artefacts.

Added COTS-based approach

	V6
	07-25-2005
	1
	G. Hernandez, O. Sanchez
	Formatted to fit 10 pages

Updated with latest Comments from Sam

	V1.0
	07-29-2005
	1
	McNav001 Team
	Updated Maintenance approach
HARMONIZATION VERIFIED

1. Document Overview

1.1 Purpose

The Software Development Plan (SDP) describes a developer's plans for conducting a software development effort. It includes new development, modification, reuse, reengineering, maintenance, and all other activities resulting in software products.

This document provides the acquirer insight into, and a tool for monitoring, the processes to be followed for software development, the methods to be used, the approach to be followed for each activity, and project schedules, organization, and resources.

1.2 Definitions

Table 1 – MCNAV001 Terms and Acronyms

	Acronym
	Translation
	Definition

	DARPA
	
	Defense Advanced Research Projects Agency

	MBARS
	
	Moon Based Autonomous Robot System

	MCNAV
	
	Moon CircumNavigating Autonomous Vehicle

1.3 References

Table 2 – References for Software Development Plan

	ID
	Reference

	1.
	Lunar Grand Challenge Requirements 06/12/05

	2.
	

2. Software Development High-level Schedule

	Date
	Deliverable
	Responsible

	22nd July 2005
	High-level Design (System Architecture)
	Changsun Song

	TBD
	1st Iteration Detailed Design (x 4)
	MCNAV001 Team

	TBD
	1st Iteration Unit Testing (x 4)
	MCNAV001 Team

	TBD
	1st Iteration System Integration & Testing
	MCNAV001 Team

	TBD
	2nd Iteration Detailed Design (x 4)
	MCNAV001 Team

	TBD
	2nd Iteration Unit Testing (x 4)
	MCNAV001 Team

	TBD
	2nd Iteration System Integration & Testing
	MCNAV001 Team

	TBD
	3rd Iteration Detailed Design (x 4)
	MCNAV001 Team

	TBD
	3rd Iteration Unit Testing (x 4)
	MCNAV001 Team

	TBD
	3rd Iteration System Integration & Testing
	MCNAV001 Team

	TBD
	4th Iteration Detailed Design (x 4)
	MCNAV001 Team

	TBD
	4th Iteration Unit Testing (x 4)
	MCNAV001 Team

	TBD
	4th Iteration System Integration & Testing
	MCNAV001 Team

	TBD
	Bug-fixing
	MCNAV001 Team

	TBD
	Final System Integration & Testing
	MCNAV001 Team

	TBD
	Qualification Test
	MCNAV001 Team

	TBD
	Launch & final deployment (race day)
	MCNAV001 Team

3. Software Development Approach

3.1 Lifecycle

An iterative incremental development approach is adopted.

The iteration process is composed of a complete development lifecycle; and includes detailed design, unit, and integration testing. During each iteration increment, the system capabilities are increased. The final iteration (the forth) consists of the integration testing of the overall system to ensure all system capabilities are properly addressed.

3.2 Integration Approach

Each iteration process consists of an integration activity. All sub-systems are integrated together and tested as a system as a final step in the particular iteration process. The integration is therefore incrementally performed. Before an iteration process is performed, all sub-systems are unit tested to reduce the probability of integration problems due to internal sub-systems defects.

3.3 COTS –Based Approach for MCNAV001

Due to the number of COTS components required to fulfil the software requirements of the system, a non-traditional approach shall be taken.

The following are the main issues identified for the development of the system using COTS components:

· The marketplace, not MCNAV001’s needs, drives COTS component development and evolution;

· COTS components and the marketplace undergo frequent, almost continuous change;

· Frequency and context of COTS component releases are determined at the discretion of the vendor(s);

· COTS components are built based on unique architectural assumptions and are not constructed using a universal or consistent architectural paradigm;

· There is in some cases limited visibility into COTS component internals and behaviour;

· COTS component assumptions about end-user processes may not match those of the MCNAV0001 team;

· COTS components often have unsuspected dependencies on other COTS components.

· To ensure effective and efficient utilization and deployment of the COTS components, the COTS vendor(s) would have to “become” part of the MCNAV001 team.

The development approach addresses four key sources of information: (1) the marketplace, (2) the stakeholder needs (or racer requirements), (3) the architectural design and (4) the risks.

[image: image1.jpg]Traditional Required Approach
Approach

‘eonizciure & ‘Simuttancous
Design, Definition
and Tradeoffs

g

Alsped o COTS Bud Sy frBrogam Mg

Approach for MCNAV001 (a COTS-Based Systems)

The approach is based on the Evolutionary Process for Integrating COTS-Based Systems (EPIC)
 developed at the SEI. This iterative approach ensures the following activities are conducted for each iteration:

1. Plan. This activity happens at two levels. One maintains the overall plan for the project and the other develops a fine-grained plan for each individual iteration.

2. Gather & Refine. These activities produce harmonized artefacts that represent the current agreed-upon state of the solution and include all of the known data and previously accepted compromises necessary to meet the iteration objectives.

3. Assemble. An essential activity in every iteration is the effort to assemble one or more Executable Representations (e.g. a prototype) of the current agreed-upon state of the solution.

4. Assess. The assess activities review the iteration to determine whether or not the iteration’s objectives were achieved.

Within each iteration the following phases are conducted in order to address the risk derived from the use of the COTS components:

a. Inception phase: The focus here is on gathering information from each of the four key sources and capturing that information in the form of project artefacts. Most of these artefacts are just started at this stage but will be expanded across later phases.

The artefacts to release at this phase include:

· A high-level understanding of the end-user needs, expectations, and constraints

· A market survey to understand the makeup, motivations, and components available in the relevant market segment(s)

· The constraints imposed by previous solutions, available technology, and components as well as applicable standards, external interfaces, and any existing systems with which the solution must interact

· The cost and schedule targets for the project, available procurement vehicles for needed components and services, impediments to end-user business process change, and risk

b. Elaboration phase: Here the basic activities are the same as those in the Inception Phase, but the level of detail is deeper and the level of resource commitment is significantly higher. The focus of the Elaboration Phase is on in-depth hands-on experiments with the candidate solutions by end users and engineers. This phase starts the preparation of the end-user business environment of the target organizations to facilitate the initial fielding of the solution.

When the candidate solutions are sufficiently understood, one solution is selected that will become the basis for the Construction Phase.

c. Construction phase: The focus here is on preparation of a production-quality release of the selected solution approved suitable for fielding. Any custom components needed are developed during this phase. It also includes preparation of necessary support materials, such as installation instructions, version descriptions, user and operator manuals, and other user and installation site support required.

This phase continues the preparation of the end-user business environment of the target organizations to facilitate the initial fielding of the solution.
Unanticipated changes may occur in requirements, components, and the architecture and design. In particular, because of the volatile nature of the marketplace, new versions of the selected components will require detailed investigation as suppliers add, change or remove functionality.

This phase ends with the Unit Test of the constructed components. This allows stakeholders to verify that a production-quality release of the solution is ready for fielding to at least a subset of the operational users as an initial fielding or alpha test.

d. Transition phase. This phase is focused on moving the solution to the user community. The Transition Phase begins with an initial fielding, or beta test of the solution developed in the Construction Phase.

This phase encompasses continued support for the solution. The Transition Phase ends when the solution is retired and replaced by a new solution. (Note that as a consequence of this, the activities of these phase overlaps with other from subsequent iterations)

Software Needs and Acquisition Strategy

Power Sub-system
· Power Distribution Controller: This has to be developed “in house” as no COTS alternative is available.

· Ambient (Temperature) Controller: The ambient controller is available as COTS from http://www.watlow.com/products/software/watconnect.cfm
· Emergency (STOP) Manager: This has to be developed “in house” as no COTS alternative available.

Navigation Sub-system
· Map Data Repository: Re-use CMU RED Team packages & algorithms

· Path Calculation Package: Re-use CMU RED Team packages & algorithms

· Real-time Path Calculation Package: Re-use CMU RED Team packages & algorithms

· Obstacle Detection Package: Re-use CMU RED Team packages & algorithms

Sensing Sub-system

· Power Constraints Manager and its interface to Power Distribution Controller: This has to be developed “in house” as no COTS alternative is available.

· LADAR Sensing and Controller Package: Re-use CMU RED Team packages & algorithms

· FLIR Sensor and Controller Package: Re-use CMU RED Team packages & algorithms

· Object Detection Package: Re-use CMU RED Team packages & algorithms

Mobility/locomotion Sub-system

· Direction Controller and its interface to Wheel Motor Interface:
 Acquisition strategy: TBD

· Velocity Controller and its interface to Brake Interface, Direction Controller and its interface:
 Acquisition strategy: TBD

· Power Constraints Manager and its interface to Power distribution controller:

 Acquisition strategy: TBD

3.4 COTS-Based model and the COTS solution selection approach

This is how the development approach (the Iterations and the associated phases) maps to the selection of the COTS solution for the different subsystems.

These selections follow a standard Decision Analysis and Resolution (DAR) approach based on the one described by the CMMI framework as follows:

1. The objectives for the COTS component are defined;

2. The evaluation criteria for selection is identified;

3. The specification of different alternatives is performed;

4. A selection method is specified;

5. The identified alternatives are evaluated against the identified evaluation criteria;

6. And the selection of the best alternative is performed.

Here is how the mapping looks like:

[image: image2.emf]Iteration 1

Iteration 2

Inception Phase Elaboration Phase Construction Phase Transition Phase

Inception …

Identification of

key COTS

selections

Conduction of

the selection

Use of the

results from

the selection

4. Work Breakdown Structure (WBS)

	WBS element
	Description

	System Definition (& Pre-Planning) – Software Requirements
	· System Requirements

· System Architecture

· Reliability Analysis

· Software Development Plan

· System Test Plan

	Requirement Change Management
	· Monitor changes to requirements (from both directions: customer and development feasibility)

· Maintenance of the requirements traceability

	Software Project Management
	· Schedule management

· Resources (staff and software) management

· Testing management

	1st Iteration – Basic Capabilities

	This iteration includes the four phases of the development (Inception, Elaboration, Construction and Transition) for the sub-systems required to address the basic system capabilities.

The requirements to be addressed are: REQ-MB-1, REQ-PG-1, REQ-PG-4, REQ-ES-1, REQ-ES-2, REQ-CPU-1, REQ-NV-0, REQ-NV-4.1, REQ-NV-7 and REQ-NV-13.
Please visit the Capability Requirements and Qualification Method document for details.

	2nd Iteration – Standard (isolated) Capabilities

	This iteration also includes the four phases of the development (Inception, Elaboration, Construction and Transition) this time however for the advanced capabilities of the system.

The requirements to be addressed are: REQ-MB-2, REQ-MB-3, REQ-PG-2., REQ-PG-3, REQ-NV-0, REQ-NV-5, REQ-NV-4.2, REQ-NV-4.3 and REQ-NV-12.
Please visit the Capability Requirements and Qualification Method document for details.

	3rd Iteration – Advanced (integrated) Capabilities

	This iteration includes the four phases of the development (Inception, Elaboration, Construction and Transition) this time to ensure the critical sub-systems starts integration (e.g. Mobility/locomotion integration with Power Distribution Management)

The requirements to be addressed are: REQ-PG-5, REQ-ES-3, REQ-ES-4, REQ-ES-5, REQ-CPU-2, REQ-NV-0, REQ-NV-5, REQ-NV-4.5, REQ-NV-15 and REQ-NV-16.
Please visit the Capability Requirements and Qualification Method document for details.

	4th Iteration – Final Integration

	This iteration includes Construction and Transition phases applied to the overall system. Main objective is to integrate all the subsystems and achieve all the expected system capabilities

	Final System Integration & Testing
	· Simulation of the qualification test

	Release & Deployment
	· Qualification Test

· Launch & final deployment (race day)

5. Software Development Critical Dependencies

	Item
	Expected delivery date at the latest
	Name of the person responsible for the item

	Hardware
	Critical dependencies associated to the HW availability for testing and deployment shall be included once planning activities are conducted for such elements of the system (this plan addresses only software components)
	McNAV team.

	COTS releases
	Critical dependencies associated to the release of selected COTS components shall be monitored once the selection procedures are conducted.
	McNAV team.

	
	
	

6. Software Development Team Organisation

	Team / Role
	Responsibilities

	Customer representative
	e. Express needs

f. Approve requirements

g. Accept product

	System Configuration Control Board (CCB)
	· Approve SW system baselines

· Manage changes to software system baselines

· Authorize the release of products from the software baseline library

	Power Management Sub-team
	· Identify (elicit and gather) software requirements for the subsystem

· Develop/acquire software components for the subsystem

· Accept software components (via unit or acceptance testing) for the subsystem

	Mobility Control Sub-team
	(as above but for different sub-system)

	Environment Sensing Sub-team
	(as above but for different sub-system)

	Navigation Sub-team
	(as above but for different sub-system)

	System Integration & Testing Sub-team
	· Identify and conduct integration activities

· Define integration testing strategies

· Conduct integration testing activities

· Release software products

	QA
	· Review (this plan and other major deliverables)

· Do project audits where indicated

	SCM Sub-team
	· Perform SCM baseline audits as identified

· Provide SCM support to the project

7. Software Maintenance

There are two main components of the overall system, which can be upgraded with new versions of software elements as follows:

· The racer travelling to the moon (and all its sub-systems);
· The parts of the system staying on earth (e.g. the navigation path pre-planning support components).

All these components however can only be upgraded before the race starts.
The following late clarification/change to the system requirements has not been integrated to this strategy: Software upgrades to the racer can be performed even when the racer is on the moon.
Meaning that (for instance) if the system fails checking its instruments just before the race (e.g. a sensor may get damaged during the voyage) the software in the racer could be upgraded to follow a different behaviour approach (e.g. a different navigation algorithm)

This issue remains open for further analysis to later stages of the project.

Maintenance pre-launch (before leaving earth)
To support software changes required pre-launch, and reduce the need for re-testing of the complete system, following features shall be offered:
· All software components shall be upgradeable from an external source (An Ethernet connection)

· All software packages shall offer auto-safety-check mechanisms. These validation mechanisms will validate hardware and other pre-conditions required for the software package to perform properly.

· A test-ware to perform readiness check shall be loaded together with the software package in order to validate the new version of the software and avoid regression of the basic and critical capabilities of the system. (See Test Plan for further details)

The software component and main data elements shall be upgraded in case the path needs to be re-calculated as the conditions of the terrain have considerably changed between the last update and the few hours prior to the launch;
The software components however will not be upgraded in any of the following cases, due to the risks derived from the impossibility to re-execute extensive production testing activities using the new versions of the software:

· Minor defects are detected;
· New features or improved algorithms are available for software components but the level of quality is known or inferior to the current artefacts;
· Minor modifications/updates to the moon terrain/map data is available.

All upgrades to the software elements shall be performed allowing self-checking tasks and minimum regression testing activities to be conducted.
Maintenance post-launch (on the moon but before race)
To be defined. (Find relevant information above)

� Evolutionary Process for Integrating COTS-Based Systems (EPIC): An Overview July 2002 C. Albert and L. Brownsword, � HYPERLINK "http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr009.pdf" ��http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr009.pdf�

MCNAV001_SDP_20050716_v0.6_20050725_gsl.doc
2 of 10
Last Updated: 7/29/2005 @ 12:05 PM

