Assignment 3 : Neural Volume Rendering and Surface Rendering

1. Differentiable Volume Rendering

1.1.5 Perform Splatting

Voxel fitting result 1

1.2 Training 3D Gaussian Representations

Number of iterations: 300

opacities: lr- 0.01

scales: lr - 0.005

colours: lr - 0.01

means: lr - 0.001

Mean PSNR: 29.739

Mean SSIM: 0.943

Parametric network result 2

training_progress

Parametric network result 2

training_final_renders

1.3.1 Rendering Using Spherical Harmonics

Mesh fitting result 1

Without Spherical Harmonics

Mesh fitting result 1 Mesh fitting result 1

With Spherical Harmonics

Mesh fitting result 1 Mesh fitting result 1

Comparison: With SH, the lighting and materials appear more realistic and with richer texture. The shadows are also softer.

2. Optimizing a basic implicit volume

2.1 SDS Loss + Image Optimization

a hanburger

Mesh fitting result 1 Mesh fitting result 1

a staning corgi dog

Mesh fitting result 1 Mesh fitting result 1

a car

Mesh fitting result 1 Mesh fitting result 1

a tree

Mesh fitting result 1 Mesh fitting result 1

2.2 Texture Map Optimization for Mesh

a dotted black and white cow & a pink cow

Mesh fitting result 1 Mesh fitting result 1

2.3 NeRF Optimization

python Q23_nerf_optimization.py --prompt "a standing corgi dog" --lambda_entropy 1e-4 --lambda_orient 1e-2 --latent_iter_ratio 0.2

python Q23_nerf_optimization.py --prompt "a color bird" --lambda_entropy 1e-4 --lambda_orient 1e-2 --latent_iter_ratio 0.2

python Q23_nerf_optimization.py --prompt "a tree" --lambda_entropy 1e-4 --lambda_orient 1e-2 --latent_iter_ratio 0.2