Explanation:
The 8-point algorithm estimates the fundamental matrix F, which relates corresponding points in two images, defined by x'^T F x = 0 where x' and x are corresponding points in each image. Here is a concise description of the steps:
Sequence Name | Viewpoint 1 (Points) | Viewpoint 2 (Epipolar Lines) | Fundamental Matrix |
---|---|---|---|
Bench | ![]() |
![]() |
[[-1.19265833e-07 -2.53255522e-06 2.07584109e-04] [-3.96465204e-07 2.27096267e-07 2.48867750e-02] [-1.06890748e-03 -2.30052117e-02 1.00000000e+00]] |
Remote | ![]() |
![]() |
[[ 7.19006698e-07 -1.90583125e-07 2.36215166e-03] [-1.88159055e-06 -8.60510729e-07 -8.45685523e-03] [-3.98058321e-03 9.46500248e-03 1.00000000e+00]] |
Explanation:
We obtain E = K2^T F K1
Sequence Name | Essential Matrix |
---|---|
Bench | [[ -0.18528359 -3.93441194 -0.95959081] [ -0.61592238 0.35280189 30.82505761] [ -1.60139078 -30.55364717 0.44620549]] |
Remote | [[ 1.01667679 -0.26948489 2.9461563 ] [ -2.66057249 -1.21676375 -11.37262789] [ -5.82753537 10.6169466 0.40187929]] |
Explanation:
The 7-point algorithm estimates the fundamental matrix F using only seven point correspondences, leveraging the fact that F has seven degrees of freedom. Here’s a streamlined explanation of the approach:
Sequence Name | Viewpoint 1 (Points) | Viewpoint 2 (Epipolar Lines) | Fundamental Matrix | Fundamental Matrix |
---|---|---|---|---|
Bench | ![]() |
![]() |
[[-3.35078059e-09 -2.91545005e-06 -6.74891733e-03] [ 3.51682683e-06 -8.84237457e-07 -1.50044163e-02] [ 9.09398538e-03 1.48748649e-02 1.00000000e+00]] |
[[-1.29362504e-02 -1.12555838e+01 -1.86746229e+01] [ 1.35772998e+01 -3.41374700e+00 -2.74530807e+01] [ 2.43843346e+01 2.45414016e+01 1.64166858e+00]] |
Remote | ![]() |
![]() |
[[ 1.06836663e-07 -3.30854241e-06 -1.37397509e-03] [ 4.79268901e-06 1.63305018e-07 -1.67456794e-02] [ 1.12974017e-03 1.64136613e-02 1.00000000e+00]] |
[[ 0.15857475 -4.91077927 -4.16191946] [ 7.1136576 0.24238918 -18.26768512] [ 5.06442012 18.65933802 1.11386097]] |
Explanation:
The RANSAC (Random Sample Consensus) algorithm is used to robustly estimate the fundamental matrix F by iteratively sampling correspondences and identifying the best model based on inliers. Here’s an overview of the process:
Bench:
Algorithm | Viewpoint 1 (Points) | Viewpoint 2 (Epipolar Lines) | Fundamental Matrix |
---|---|---|---|
Eightpoint | ![]() |
![]() |
[[-1.17732480e-08 -5.96492484e-07 -9.25459194e-05] [-2.11574661e-06 7.33247733e-07 2.38472741e-02] [-8.40950559e-04 -2.23150919e-02 1.00000000e+00]] |
Sevenpoint | ![]() |
![]() |
[[-6.00278924e-08 -1.89901309e-06 -1.01789158e-04] [-8.35050242e-07 6.35592554e-07 2.34660431e-02] [-7.75197644e-04 -2.20073479e-02 1.00000000e+00]] |
Remote:
Algorithm | Viewpoint 1 (Points) | Viewpoint 2 (Epipolar Lines) | Fundamental Matrix |
---|---|---|---|
Eightpoint | ![]() |
![]() |
[[ 3.31549792e-07 1.83719791e-06 1.65131980e-03] [-4.99599151e-06 -1.96519828e-06 -1.09521744e-02] [-3.16482952e-03 1.34098309e-02 1.00000000e+00]] |
Sevenpoint | ![]() |
![]() |
[[ 9.07903785e-07 9.52425153e-06 2.80375262e-03] [-2.37640159e-05 -1.12324145e-05 -3.28032408e-02] [-5.52592264e-03 4.79981947e-02 1.00000000e+00]] |
Ball:
Algorithm | Viewpoint 1 (Points) | Viewpoint 2 (Epipolar Lines) | Fundamental Matrix |
---|---|---|---|
Eightpoint | ![]() |
![]() |
[[ 3.71042537e-07 -2.25290945e-06 -1.29575359e-02] [ 2.83902820e-06 -9.48009479e-07 -2.08477087e-02] [ 1.68824336e-02 2.03637835e-02 1.00000000e+00]] |
Sevenpoint | ![]() |
![]() |
[[-1.12736128e-08 -2.69063603e-06 -5.47932562e-03] [ 3.29220226e-06 -7.78788925e-07 -1.30644532e-02] [ 7.31943242e-03 1.29175883e-02 1.00000000e+00]] |
Hydrant:
Algorithm | Viewpoint 1 (Points) | Viewpoint 2 (Epipolar Lines) | Fundamental Matrix |
---|---|---|---|
Eightpoint | ![]() |
![]() |
[[ 1.15137573e-07 -3.55180795e-06 -1.44531518e-03] [ 5.07452803e-06 8.62427635e-08 -1.69450956e-02] [ 1.18864639e-03 1.66666913e-02 1.00000000e+00]] |
Sevenpoint | ![]() |
![]() |
[[ 8.03014968e-08 -4.41774279e-06 -1.17500281e-03] [ 5.91955998e-06 -6.29390198e-08 -1.74127183e-02] [ 9.10060610e-04 1.72900940e-02 1.00000000e+00]] |
Explanation:
The triangulation algorithm reconstructs 3D points from 2D correspondences in two images, given the projection matrices of each camera. Here’s a concise summary of the approach:
I've used Mast3R demo as that was easier to set up. I tried COLMAP but since I have a Mac it was difficult to set it up as the function "pycolmap.patch_match_stereo" requires the COLMAP to be built with CUDA. Also since there was flexibility in the setup I chose the above
Sequence | Multi-view images | Output | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Room Near Robolounge |
|
||||||||||
NSH 1st Floor |
|