Before | After |
---|---|
0.9801935239283572 | 0.9999413201351588 |
0.9077385010215981 | 0.9982815650684259 |
Before | After |
---|---|
0.9954293641543964 | 0.9999413201351588 |
0.9964914336529828 | 0.9999752424843763 |
Before | After |
---|---|
0.9928400002003689 | 0.9999744329310002 |
0.9958562285955483 | 0.9995508549532741 |
Before | After |
---|---|
0.9868327646462675 | 0.9999251970022865 |
0.9987191070813484 | 0.9999383464088631 |
Before | After |
---|---|
0.7842324298864688 | 0.999978139517972 |
0.9999970152053781 | 0.9999869448826936 |
Use the annotated points to get two pairs of parallel lines. Use $x=l_1$x$l_2$ to get the intersection of two lines. Use $x_1$x$x_2$ to get the line at infinite. Then, we can compute H with:
$l=H^{-T}l'$, l refers to the line at infinite, $l=[l_1,l_2,l_3]^{-T}$.
We get one solution H=$$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_{1} & l_{2} & l_{3} \end{bmatrix} $$
Before | After |
---|---|
-0.10272308450664172 | 0.05650143872109491 |
0.45958021577399355 | 0.01784973627322923 |
Before | After |
---|---|
0.43166311591881273 | 0.09891134391597332 |
0.416638993307934 | 0.06254952999238895 |
Before | After |
---|---|
-0.2526709009836574 | 0.0018168249234062953 |
0.08817394212374821 | 0.008198536236441723 |
Before | After |
---|---|
0.1677181548716634 | -0.008091866263126083 |
0.03498266075814032 | -0.029306932732914674 |
Before | After |
---|---|
0.6685881410241951 | -0.021182064318718698 |
-0.04479521389935166 | -0.009640234139807519 |
According to $$ l' C_\infty^{*'} M' = 0 $$, use SVD to get the solution of AC=0 (image is already affine-rectified)
Then use SVD for $ C_\infty^{*'} $ and get 2 Non-zero eigenvalues.
With $C_\infty^{*} =HC_\infty^{*'} H^{T}$, we get $$ H= \begin{bmatrix} \sqrt{\sigma_1} & 0 & 0 \\ 0 & \sqrt{\sigma_2} & 0 \\ 0 & 0 & 1 \end{bmatrix} U^T $$
With x'=Hx, we know that H can be solved in Ah=0, where A_i=\begin{bmatrix} x_2^i & y_2^i & 1 & 0 & 0 & 0 & -x_1^i x_2^i & -x_1^i y_2^i & -x_1^i \\ 0 & 0 & 0 & x_2^i & y_2^i & 1 & -y_1^i x_2^i & -y_1^i y_2^i & -y_1^i \end{bmatrix}
Then get the solution H with eigenvalues decomposition of A.
Expand the situation in Q3 to take 12 points and then perform homography on each of them.