
Notes from Class Set 20 Page

Copyright Jim Roberts December 2013 Pittsburgh, PA 15221 All Rights Reserved

1

Video – revised for Processing 2.0
Note: In working on this, Processing seems to crash frequently when Jim changed from
file to file and tried different ideas. If you are going to work with video be sure to save
your work often and before every run.

[control][alt][delete] brings up the Task Manager on Windows machines
[option][command (the apple key)][esc] brings up a similar window that allows you for
do a “force quit” on an application.

You may need to use these.

Video is a series of still images that are displayed consecutively at some reasonable rate.
The result is interpreted by our brains as motion. Modern video is displayed at a rate of
just a little bit less than 30 images or frames per second.

Using Processing, we can model our work with video very closely to the work we did
with images in the previous set of notes. For each frame or image in the video there is:
 a width variable
 a height variable
 a pixels array

The demo code all share this common set of code:

1. You must import the video library from the Sketch menu in the IDE. When you do
this, the IDE will add this line of code to your program:
 import processing.video.*;

Do not type this yourself – if you do, it will not work!

2. You need a Capture object declared as a global variable.
 Capture video;
The demos use the object name video. The provided demos (more later) use the name
context and John and Jim often use the name, cam. Choose your own but make it
obvious that it is an object reference to the Capture class.

3. This is where we begin to find differences between the “older” notes and demos and
Java 2.0. You need an array of Strings for the possible camera names. The single
camera on most laptop portables can provide different formats of video signals and we
need to tell Processing which one to use. The dimensions of the window are very
important. Use size(640/480) or a multiple like size(1280, 960). Otherwise
you may not get video but you may get a lot of dire warnings in the Console window.
The code on the next page gets the names of those signal formats as Strings and uses the
first one as the source:

Notes from Class Set 20 Page

Copyright Jim Roberts December 2013 Pittsburgh, PA 15221 All Rights Reserved

2

 void setup()
 {
 size(640, 480); // These values are are important.
 // See the notes!
 String [] camreras = campture.list();
 if (cameras.length == 0)
 {
 println(“There are no cameras available.”);
 exit();
 }
 // execution does not get here if there are no cameras
 video = new Capture(this, camera[0]);

You can use:

 video = new Capture(this, width, height);

or you can use depending on which one works for what you are trying to do.

 video.start();
 . . . // what ever else you need to do

4. Next we move to the draw() function:
 void draw()
 {
 if (video.available())
 {
 video.read();
 . . . and the rest of your code

 } // end of the if
 } // end of draw()

Just showing the video image:
Just displaying video from the camera is very straightforward. Once the connection is
made between the camera and the program, the video image can be shown like a jpeg
like a jpg:
 image(video, 0, 0);
or
 image(video, 0, 0, width, height);

Demo VideoTest1 and 2 show this type of use.

Notes from Class Set 20 Page

Copyright Jim Roberts December 2013 Pittsburgh, PA 15221 All Rights Reserved

3

Shiffman presents a number of examples in Chapter 16 of the book. His first examples
work with a camera attached to your computer. If you make these modifications, most of
his code “should” work.

Altering the video image or using the video data:

If you want to work with the pixel values of the video and display altered images, the
strategy seems to be different (or Jim misunderstood the original code…)

One way of viewing the strategy is the following:

First, in the setup() function we get access to the pixels array of the graphics window
Processing uses by calling loadPixels().
 loadPixels();

With this loadPixels() call we can alter the value of any pixel that is being displayed in
the graphics window.

Then:

1. Traverse video’s pixel array visiting the elements we need to visit
2. Extract data from each element
3. Compute the data we need
4. Alter the pixel array of the graphics window with the computed data
5. Save any values we need for the next iteration or the next frame.

If we are going to alter the video image, we DO NOT SHOW the original video image.
We alter the corresponding element of the pixel array of the graphics window and display
that when we are done.

Notes from Class Set 20 Page

Copyright Jim Roberts December 2013 Pittsburgh, PA 15221 All Rights Reserved

4

Here is a piece of code that alters the image of Jim in his office from color to gray:
void draw()
{
 if (video.available())
 {
 video.read();
 video.loadPixels();
 for(int i = 0;
 i < video.pixels.length;
 i++)
 {
 color videoColor =
 video.pixels[i];
 float r =
 red(videoColor);
 float g =
 green(videoColor);
 float b =
 blue(videoColor);
 float average = (r+g+b)/3;
 pixels[i] =
 color(average);
 }
 updatePixels();
 }

Check to see if there is a video signal available this
frame.
 Read it.
 Load the video’s pixels array for access.
 Traverse the video’s pixel array pixel by pixel.

 Get the color for the pixel.

 Extract the red value.

 Extract the green value.

 Extract the blue value.

 Average them to produce a gray value.
 Transfer the color value of the graphics window’s
 Corresponding element in its pixel array .

 Transfer the updated pixels array of the grahics window
back to Processing for display.

Notes from Class Set 20 Page

Copyright Jim Roberts December 2013 Pittsburgh, PA 15221 All Rights Reserved

5

In Shiffman’s examples (which no longer work for Processing 2.0), he uses a set
of nested loops to traverse the array:
 for(int x = 0; x < video.width; x++)
 {
 for(int y = 0; y < video.height; y++)
 {
 loc = x + y*video.width;
 fgColor = video.pixels[loc];
 bgColor = backgroundImage.pixels[loc];

 float r1 = red(fgColor);
 float g1 = green(fgColor);
 float b1 = blue(fgColor);
 float r2 = red(bgColor);
 float g2 = green(bgColor);
 float b2 = blue(bgColor);

 diff = dist(r1, g1, b1, r2, g2, b2);

 if (diff > threshold)
 {
 pixels[loc] = fgColor;
 }
 else
 {
 pixels[loc] = color(0, 255, 0);
 }
 } // end inner for loop
 } // end outer for loop

This is different from the code written by Jim. Either works fine. Jim’s might be a
bit easier to follow.

