
Class Notes Set 15 Page

Copyright Jim Roberts October 2012 Pittsburgh, PA 15221 All Rights Reserved

1

Classes #2
These notes discuss the class code cc15. You should have that code in the
Class1 folder open as you read through this.

In our last exciting episode of class notes, we left our hero on a dark and stormy
night… er… sorry .. wrong story… We were exploring classes and we discussed
this code:
// Class Code Set15
// Classes in Processing #1

Square s;

void setup()
{
 size(600, 600);

 s = new Square();
 s.setup();

 background(0);
}

void draw()
{
 s.move();
 s.draw();
}

class Square
{
 // fields or variables
 float x, y, edge, dX, dY;
 color col;

 void setup()
 {
 x = random(10, 500);
 y = random(10, 500);
 edge = random(50, 200);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255),
 random(255),
 random(255));
 }
 void move()
 {
 x += dX;
 if (x + edge > width || x < 0)
 {
 dX = -dX ;
 }
 y += dY;
 if (y + edge > height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 {
 fill(col);
 rect(x, y, edge, edge);
 }
}

The idea here is to capture, or encapsulate, or code everything we need to draw
a square within a single programming entity that we call a class. In this example
the class is named, Square. Now we can declare references to objects of this

Class Notes Set 15 Page

Copyright Jim Roberts October 2012 Pittsburgh, PA 15221 All Rights Reserved

2

Square class. This is the main idea of Object Oriented Programming. Let’s
pursue this idea and create a Circle class.

class Circle
{
 // fields (variables)
 float x, y, diameter, dX, dY;
 color col;
 // functions
 void setup()
 {
 x = random(10, width/3);
 y = random(10, height/3);
 diameter= random(50, width/10);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255), random(255), random(255));
 }
 void move()
 {
 x += dX;
 if (x + diameter> width || x < 0)
 {
 dX = -dX ;
 }

 y += dY;
 if (y + diameter> height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 {
 fill(col);
 ellipse(x, y, diameter, diameter);
 }
}

This will work just like the Square class… but … wait a mo…
Let’s look at these two classes side-by-side:
class Square
{
 // fields or variables
 float x, y, edge, dX, dY;
 color col;

class Circle
{
 // fields (variables)
 float x, y, diameter, dX, dY;
 color col;

Class Notes Set 15 Page

Copyright Jim Roberts October 2012 Pittsburgh, PA 15221 All Rights Reserved

3

 void setup()
 {
 x = random(10, 500);
 y = random(10, 500);
 edge = random(50, 200);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255),
 random(255),
 random(255));
 }
 void move()
 {
 x += dX;
 if (x + edge > width || x < 0)
 {
 dX = -dX ;
 }
 y += dY;
 if (y + edge > height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 {
 fill(col);
 rect(x, y, edge, edge);
 }
}

 void setup()
 {
 x = random(10, width/3);
 y = random(10, height/3);
 diameter= random(50, width/10);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255),
 random(255),
 random(255));
 }
 void move()
 {
 x += dX;
 if (x + diameter> width || x < 0)
 {
 dX = -dX ;
 }
 y += dY;
 if (y + diameter> height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 {
 fill(col);
 ellipse(x, y, diameter, diameter);
 }
}

There are only two real differences between the two classes. One is a variable
name: edge vs diameter and the other is one function call: rect vs ellipse. Even
though there are some minor differences in the initilization of the class variables.,
this is a massive duplication of code and effort. Even with cutting and pasting,
the program is longer than it needs to be.

We can solve this duplication of code and effort by using a feature of OOP called
inheritance. With the correct syntax, we can create new classes that “inherit”
everything in their parent’s class (without the parent having to die).

Here is how we can do this. First, we have to make a compromise concerning
the variable names. We could use edge for the circle or diameter for the square.
Since both are dimensions, we will replace the variable names edge and
diameter with the name dimension.

Class Notes Set 15 Page

Copyright Jim Roberts October 2012 Pittsburgh, PA 15221 All Rights Reserved

4

Next, we have to define the parent class of the Square and Circle class. We will
call this the Shape class. Here is the definition:

class Shape
{
 float x, y, dimension, dX, dY;
 color col;
 void setup()
 {
 x = random(10, width/3);
 y = random(10, height/3);
 dimension= random(50, width/10);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255), random(255), random(255));
 }
 void move()
 {
 x += dX;
 if (x > width || x < 0)
 {
 dX = -dX ;
 }
 y += dY;
 if (y > height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 { // this function is intentionally empty
 }
}

Notice that the draw() function is empty. That is because there is no shape to
draw. The idea of a shape is somewhat abstract. So we will make no effort to
draw shape.

Now we bring on the inheritance. Here are the definitions of the classes Square
and Circle. In the code below, they are defined as children of the parent class,
Shape:
class Square extends Shape
{
 void draw()
 {
 fill(col);
 rect(x, y, dimension, dimension);
 }
}

class Circle extends Shape
{
 void draw()
 {
 fill(col);
 ellipse(x, y, dimension, dimension);
 }
}

Class Notes Set 15 Page

Copyright Jim Roberts October 2012 Pittsburgh, PA 15221 All Rights Reserved

5

The correct syntax is shown in blue in both class definitions. The word extends
tells Processing that everything in the class Shape can be used here. The
variables x, y, dimension and col are declared and initialized in the parent class,
Shape. The definitions of setup() and move() are also located in the parent
class, Shape. When our code tells a Circle object or a Square object to do
something, Processing looks at the definitions of Circle or Shape classes to see
what to do. If it does not find the answer there, it looks in the parent class,
Shape for instructions. The only thing needed in the Circle and Square classes
are instructions on how to draw the actual circle or square. This is done in the
definition of the draw() functions.

Inheritance allows us to take advantage of code already written and that is
(hopefully) tested and trusted to be free of errors.

There is some jargon associated with OOP and this inheritance stuff.

One is the diagram we use to show the inheritance relationships. It is usually in
the form of a tree with the parent at the top of the tree.\

parent

children

Shape

Square Circle

siblings

super class

sub class

Terms used in describing the use of inheritance are shown above. The use of
inheritance is often stated in terms of “extending” the Shape class to define the
Square and Circle classes. Another phrase is that a programmer is “sub-
classing” the Shape class to define the Square and Circle classes.

This works fine with single references or an array of references. The code on the
next page works properly:

Class Notes Set 15 Page

Copyright Jim Roberts October 2012 Pittsburgh, PA 15221 All Rights Reserved

6

Shape [] array;
void setup()
{
 size(600, 600);
 array = new Shape[100];
 initArray();
 background(0);
}
void draw()
{
 fill(0);
 rect(0, 0, width, height);
 moveAndDrawAll();
}
void moveAndDrawAll()
{
 for (int i = 0; i < array.length; i++)
 {
 array[i].move();
 array[i].draw();
 }
}

void initArray()
{
 for (int i = 0; i < array.length; i++)
 {
 float randomNumber = random(2);
 if (randomNumber < 1)
 {
 array[i] = new Square();
 }
 else
 {
 array[i] = new Circle();
 }

 array[i].setup();
 }
}

All elements in an array in Processing have to be the same type. We cannot mix
int and float values in the same array. This means that we cannot mix Square
and Circle object references in the same array. BUT, we can declare an array of
references to their parent type, Shape. This is perfectly legal. However, we do
not declare any actual Shape references. When it is time to new the references
in the array (shown in purple), this code uses a random value to choose
between a Square or Circle object reference.

