
Notes from class Set 09.2 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

1

Translation, Rotation and Scale
We have moved figures by altering the value of the variables that store the (x, y)
anchor point of the figure we want to move. This is a very useful way to move
figures but there is another… beware… the event horizon is closing…

What if we coded a complex figure with magic number (never…) and now we
want/have to move it? And what if we do not have time to recode it with
variables and expressions?

If we cannot alter the variables, Processing allows us to move the origin. We can
move the (0,0) point which has a default location of the upper left corner to
anyplace we want to.
size(400, 400);
background(255);
stroke(255, 0, 0);
strokeWeight(3);

// vertical line
line(0, 0, 0, height);

// horizontal line
line(0, 0, width, 0);

ellipse(0, 0, 50, 50);

The function that moves the origin this is the function translate(). The first
argument it the amount of x shift in pixels and the second argument is the
amount of y shift in pixels.
size(400, 400);
background(255);
stroke(255, 0, 0);
strokeWeight(3);

translate(200, 200);
// vertical line
line(0, 0, 0, height);

// horizontal line
line(0, 0, width, 0);

ellipse(0, 0, 50, 50);

Once we translate, everything is moved to the left or right and up or down the
distance dictated by the arguments. This translation affects only figures drawn
after the translation and only until the frame is finished being rendered. Every

Notes from class Set 09.2 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

2

new repetition of the draw() function that generates the frame begins with the
anchor point in the upper left corner.

If you want to temporarily translate to a new position and then return to the
previous coordinate values, you can get a temporary shift but putting the
translate and the desired drawing code inside two functions that mark the
translate as temporary. These functions are pushMatrix() and popMatrix().

In this example the ellipse is drawn within the pushMatrix/popMatrix and the rect
is drawn after .
size(400, 400);
background(255);
stroke(255, 0, 0);
strokeWeight(3);

pushMatrix();
 translate(200, 200);
 line(0, 0, 0, height);
 line(0, 0, width, 0);
 ellipse(0, 0, 50, 50);
popMatrix();
fill(0, 0, 255);
rect(0, 0, 50, 50);

Rotation
We can also rotate figures. Unless we want to resort to trig (sin and cos) 1 we
have not been able to do much in the way of rotation.

1 We will resort to this a bit later in the term…

Notes from class Set 09.2 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

3

Even with trig we could not have drawn this: without a major exercise in
curveVertex() experimentation.

This figure was drawn with this code:

size(400, 400);
background(255);
stroke(255, 0, 0);
strokeWeight(3);
noFill();
pushMatrix();
 translate(200, 200);
 rotate(PI/3);
 ellipse(0, 0, 50,150);
popMatrix();
fill(0, 0, 255);
rect(0, 0, 50, 50);

The rotate function takes a single argument – a value in radians. This is fine if
the amount is easily defined with an expression using PI (the Processing
constant for 3.14159).
However, what if we are using the frameCount variable or some other variable to
control the rotation? You can do it with PI or you can let Processing do it for
you. Processing has a function named radians() that takes a single argument
(representing an increment of rotation of rotation in degrees). The function
radians() takes the argument and computes and returns the corresponding
radian value. This ellipse has been rotated 20 degrees.
size(400, 400);
background(255);
stroke(255, 0, 0);
strokeWeight(3);
noFill();
pushMatrix();
 translate(200, 200);
 rotate(radians(20));
 ellipse(0, 0, 50,150);
popMatrix();
fill(0, 0, 255);
rect(0, 0, 50, 50);

Notes from class Set 09.2 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

4

We can mix translations and rotations in interesting ways.
void setup ()
{
 size(600, 300);
}

void draw()
{
 fill(random(255),
 random(255),
 random(255));
 translate
 (frameCount*10, 150);
 rotate
 (radians(frameCount*10));
 rect(0, 0, 30, 30);
}

Here is one more tool for your toolbox…

Scale
We can resize figures without altering the argument value. The function scale()
can reduce and enlarge figures. It can be a bit tricky to use but it might be worth
exploring. Take a look at this example:
size(400, 400);

rectMode(CENTER);
fill(255, 0, 0); // red
rect(200, 200, 50, 50);

scale(.5);
fill(0, 255, 0); // green
rect(200, 200, 50, 50);

• Both rectangles are drawn 200 pixels over and down from the upper left

corner.
• Both rectangles are drawn with edges of 50 pixels.

The green rectangle is drawn after the function scale()is called. The argument is
.5 and the result is that everything is reduced by 50%. Everything drawn after
scale()is called is reduced by 50%.

Notes from class Set 09.2 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

5

The change caused by calling scale() is in effect only during the remainder of the
current frame. Once the rendering of the current frame is finished, the scale of
the drawing returns to its default value which would be 1.

And last today but not least (new – no code for this one)
Temporary styles that can be “erased” when you are done.

There are two functions in Processing that allow you to temporarily alter the
various values for the color of the stroke and fill and for the strokeWeight or the
various modes to draw one thing and then throw them away so everything
reverts to the previous settings.

These functions are
pushStyle();

popStyle();

The terms push and pop have a long history in programming and revere to the
idea of pushing or adding a new item to a stack of stuff – like putting a new sheet
of paper on an existing stack. Pop refers to removing the top item on the stack
like removing the top sheet of paper on the stack.

Processing keeps what we can think of as a “style sheet” that has all of the
values that Processing must use to draw figures. The idea of pushStyle() is that
it puts a temporary copy of this style sheet on top of the stack. When your code
alters the fill or the rectMode, it changes the new copy of the style sheet that is
on top of the stack but not the original style sheet that is second from the top in
the stack.

When you are finished drawing, you can throw away this temporary style sheet
and return the various values to their previous settings by calling popStyle().

Check the API for pushStyle() to see what can be altered temporarily.

Notes from class Set 09.2 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

6

Review of the longevity of function calls that change the
drawing environment:
Change extends beyond current
frame until changed.

Change extends only until the
end of the current frame.

fill(),
noFill(),
stroke(),
noStroke(),
strokWeight(),
rectMode(),
ellipseMode(),
imageMode(),
textSize(),
textAlign()

translate(),
rotate(),
scale()

Beware, there may others to add to either list.

Is any of this stuff on the test?
Nope!
No Way!
Never!
Not in Jim’s Lifetime!

This is for you to use as you see fit. It is not testable in any way, shape or form.

Seriously…

