
Notes from class Set 09 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

1

Noise
Random numbers are very useful to our work as programmers. We have used
them in a number of ways. In Processing we have a luxury with the random()
function. In case you forgot, the random() function returns float values. There
are two signatures for calling random():

1. random(float) which returns a float value between zero and up to but not
including the value of the parameter

2. random(float, float) which returns a float value between the first
parameter and up to but not including the value of the second parameter

In other programming languages (c, c++. Java), the random function behaves
very differently. It usually returns a decimal value between zero and up to but not
including one. We have to add our own arithmetic to shift the random value into
the range we need.

The random values returned by the function have no obvious relationship to the
other random values. If they did, we could “cheat” if we used the function in
writing a game. But, what if we wanted the next random number to be related to
the previous one is some manner? Below are two sets of 100 points using
randomly generated values of x and y by two different types of random value
functions:

By inspection, can you determine which plot was generated by the random()
function that we have used in class?
Hopefully you chose the right plot. Here is the code and output for four runs of
the code that generated the plot on the right:
void setup()
{
 size(400, 400);
 strokeWeight(4);
 background(204);
}
void draw()
{

Notes from class Set 09 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

2

 for(int i = 0; i < 100; i++)
 {
 float x = random(width) ;
 float y = random(height);
 point(x,y);
 }
 noLoop();
}

Here is the code and output of four runs for the code that generated the output
on the left:

float xoff = 0.0;
float yoff = 0.1;
void setup()
{
 size(400, 400);
 strokeWeight(4);
 background(204);
}

Notes from class Set 09 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

3

void draw()
{
 for(int i = 0; i < 100; i++)
 {
 xoff = xoff + .01;
 yoff = yoff + .02;
 float x = noise(xoff) * width;
 float y = noise(yoff) * height;
 point(x,y);
 }
 noLoop();
}

The x and y values for these points were generated using random values
returned by Processing’s noise() function. In these plots we can see that each
newly returned value is related in some manner to the previous value.

Processing’s documentation on the noise function gives you some background.
The technique (algorithm) used by the function is named after the person, Ken
Perlin who developed it. According to Wikipedia, he won an Academy Award
for Technical Achievement from the Academy of Motion Picture Arts and
Sciences in 1997 for this contribution to the 1982 movie Tron. The technique is

Notes from class Set 09 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

4

often called Perlin noise. It is used today to generate such forms as clouds,
water, and land in computer generated images (CGI);

Here is the 100 actual values returned by Processing’s noise() function from a
run of the code shown above:
0.47986597
0.47786325
0.47457564
0.47013262
0.4649182
0.4584306
0.45160374
0.44444704
0.4371369
0.43020386
0.4227469
0.41610792
0.41012445
0.40498042
0.40107957
0.397246
0.3946676
0.3928898
0.3911529
0.3889251

0.38734418
0.38497344
0.38241827
0.378594
0.3734412
0.36913756
0.36484095
0.36187142
0.35876182
0.35682046
0.35456306
0.3529221
0.35262266
0.35166764
0.3516546
0.35109547
0.35063747
0.351169
0.3496812
0.34799734

0.34457532
0.34022632
0.33626893
0.33079487
0.3260786
0.3204948
0.31510687
0.31108323
0.30673426
0.30391735
0.30071595
0.2976696
0.29562092
0.29294428
0.29133168
0.28940663
0.28756848
0.28688917
0.285765
0.2858417

0.2859778
0.28613523
0.28753534
0.28880042
0.29141024
0.29445785
0.29743034
0.30148578
0.30505294
0.3093356
0.3136343
0.31714797
0.32103762
0.32395038
0.32705477
0.32991102
0.3319153
0.33411282
0.33558744
0.33721545

0.3384362
0.33882996
0.33896476
0.33845404
0.3378385
0.33660161
0.334685
0.33243567
0.33039266
0.32892138
0.3276147
0.32655683
0.3257497
0.32526538
0.32507545
0.32495114
0.32490528
0.32488447
0.32490966
0.32492584

Processing’s noise() function returns values between zero and but not including
1.00 So our code must take this value and scale it and shift it into the range we
need. In the code above the values needed are between zero and width or
height so we do not have to shift the returned value. But we do have to scale it.
Scaling is done in this code:
float x = noise(xoff) * width;
float y = noise(yoff) * height;
The value returned by noise() is scaled by multiplying it by the width or height of
the window. Since the returned value is between zero and 100, this code is
essentially using the returned value as a percentage of the width or height.

The value returned by the noise() function differs for two reasons. Each
different run of the program causes a different sequence of values. Here are two
runs of a slightly modified program. This program returns only ten values and the
parameter for the call is a constant.
 void draw()

{
 for(int i = 0; i < 10; i++)
 {
 println(noise(0.0));
 }
 noLoop();
}

Notes from class Set 09 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

5

run #1 run #2

As you can see, each run generated a different random value but the ten
returned values in each run are the same. The difference between the returned
values in an individual run is controlled by the parameter of the call. A constant
returns the same value.

But what happens when the parameter’s value is altered by different amounts.
Here is three runs and the returned values of another slightly modified version of
the code that uses different parameters for the call of the noise() function .

run #1 change = 0.1 run #2 change = 0.01 run #3 change = 0.001
void draw()
{
 float offSet = 0.0;
 for(int i = 0; i < 10; i++)
 {
 offSet = offSet + 0.1;
 println(noise(offSet));

 }
 noLoop();
}

void draw()
{
 float offSet = 0.0;
 for(int i = 0; i < 10; i++)
 {
 offSet = offSet + 0.01;
 println(noise(offSet));

 }
 noLoop();
}

void draw()
{
 float offSet = 0.0;
 for(int i = 0; i < 10; i++)
 {
 offSet = offSet + 0.001;
 println(noise(offSet));

 }
 noLoop();
}

0.67037326
0.55882114
0.472238
0.39287695
0.30840316
0.3161984
0.2899496
0.24448672
0.18861179
0.15002044

0.20696281
0.20643763
0.20557557
0.2044105
0.20304315
0.20134191
0.19955176
0.19767511
0.1957582
0.19394018

0.32957157
0.32957587
0.3295873
0.3295977
0.32961744
0.32964167
0.32967186
0.3296954
0.32972658
0.3297699

We can see that smaller incremental changes in the parameter variable offSet
generate smaller increments in the values returned by the noise() function.

0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743

0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755

Notes from class Set 09 Page

Copyright Jim Roberts September 2012 Pittsburgh, PA 15221 All Rights Reserved

6

A detailed and in depth look at noise() is beyond a first look that is being
presented in class and in these notes. And, unlike the rect() or point() functions,
where a single reading and use makes us an expert in using them,
understanding the behavior of the noise() function takes a great deal of thought,
study, and time working with it in code. The work should take into account that
there are three signatures for calling noise(). These values relate to the x, y,
and z coordinates in noise space. There is another function in Processing that is
closely related to the noise() function – noiseDetail(). This function gives us
more control over the values returned by the function.

Use noise() and work with it as you see fit, but watch your time.

