Class Notes Set #3 Page 1

Functions - More Than You Want to Know... But Not
Everything You Need to Know...

Shiffman does a very good job explaining functions but there were some minor
murmuring last term because there were no class notes for this topic. Your really need
to read that stuff for today.

Here is a completely different look at functions - one that exists nowhere else'.

Let’s consider functions not in terms of what they do or what arguments they need
but in terms of:

* who “owns” them

* who “uses” them

The entity that “owns” a function is the entity that wrote it. In the first week, all of
the functions you used were owned by or written by Processing programmers: fill(0),
ellipse(10, 10, 5, 2)... were all written by Processing programmers some time in
the past.

When someone “writes” a function (the better term to use is “defines a function”),
they put in the code needed to tell Processing how to do whatever task the function is
supposed to do. Processing defined all of the functions you have used thus far in the
class.

The entity that “uses” the function is the entity that types the name of the function
and the required arguments somewhere in a program. You were the user of the
functions. You used the functions. A better term is call. You called the functions that
were owned by Processing. Your programs have been a list of function calls and
variable declarations and assignments.

Using this nomenclature (remember, this is uniquely a Jim thing...) we can categorize
the functions we will use in the next three class meetings.

Wait a minute.
- Who else would write the functions but Processing?

- Who else would call the functions but us?

This is where some new fun begins.

! which should really scare you...

Copyright Jim Roberts, January 2013 Pittsburgh, PA 15221

Class Notes Set #3 Page 2

Today we are going to look at the exact reverse. We are going to write or define the
functions and Processing will use or call them...
There are two functions that Processing will call we define them in our program:

- setup()

- draw()

If we do not define them, Processing does not care - it is just one thing less for
Processing to do today.

BIG CHANGE ALERT

Starting with homework #3 all of our code must be either
- variable declarations
- function definitions

We will explain this in class.

The agreement we have with Processing is the following:

1. Processing will take care of any variables that we declare first.

2. Processing will call (execute the code inside) the setup() function next - if
we have one defined (written) in or program.

3. Processing will then call (and execute the code inside) the draw() function if
we have one defined (written) in or program. B/T/W Processing executes the
draw() function over and over again (about 60 times per second) until we
either stop it or close the graphics window.

Here is the structure of all of our programs from now on:
- variable declarations (and possible initializations)

- definition of the setup() function

- definition of the draw() function

We know how to declare variables from the last class:
sketch_jan20a | Processing 1.5.1

STANDARD

sketch_jan20a § L4

A/ Tuesday January 24
/7 First Look at Writing Functions

floot x, v, dia;

Copyright Jim Roberts, January 2013 Pittsburgh, PA 15221

Class Notes Set #3 Page 3

This code tells Processing to reserve three pieces of memory configured to hold
decimal numbers and name them x, y, and dia.

Now how do we define or write a function? The physical form of all function
definitions is the same. Here are the skeletons for the definitions of a setup()and a
draw() function:

@O0 sketch_jan20a | Processing 1.5.1

sketch_jan20a §

A4 Tuesday January 24
A7 First Look ot Writing Functions

floot %, vy, dia;

void setupl)
i

I}

wold drawd 3

{
Iy

sl o

Here are the labels for each part:

‘®00 sketch_jan20a | Processing 1.5.1

sketch_jan20a §

A4 Tuesday January 24
4/ First Look at Writing Functions

floot x, ¥, dia;

wold setupd D

,———”””””"{ ‘(\\\\\\\\\\

return type name
oid e w(/></ argument or parameter list
body N
7
1
. .

Copyright Jim Roberts, January 2013 Pittsburgh, PA 15221

Class Notes Set #3 Page 4

Lets take these one at a time. First the return type. In math class we learned that
functions return values. The square root function takes an argument (4), computes

the square root of the argument and returns it (2). This is how your calculator works.
Processing has functions like this. Next class we will work with a function named
random() that returns a random number. The number it returns is a float number
(has a decimal) so the return type of random() is float.

In programming languages like Processing we also have functions that do things but
do not return any values that we can use in our program. The functions you have been
using are such functions. The rect() function draws a rectangle but does not return
any value to our program. When a function does not return any value, Processing
considers its return type to be void.

Our setup() and draw() functions must have a return type of void or Processing
will not call them.

The name of the function must begin with an alpha character. The remaining
characters must be alpha or digit. By convention the first letter is lower case -
please follow this convention so we can read and understand your code. The name
should describe what the function does. We will use our setup() function to tell
Processing how to “set things up” for our program. This is where we put code that we
need to do before the program begins to draw.

The two parentheses make up the argument list. The argument list for setup() and
draw() must be empty or Processing will not call them. Later we will define functions
with arguments in the argument list.

The body of the function is within a pair of braces { } is were we tell Processing
exactly what we want the function to do when it is called.

The body of our setup() function is where we put the code in that we want
processing to execute before any drawing begins.
The first line of code in setup() must be

size(magic-number, magic-number);
Use numbers for the arguments. Do not use variables or expressions. They might
work but not always.

The body of our draw() function is where we put the function calls to draw what we
want to display in the window.

The next page shows a sample of how we use these two functions in a program:

Copyright Jim Roberts, January 2013 Pittsburgh, PA 15221

Class Notes

Set #3 Page

// Homework #2 // second part of R
// Copyright Jim Roberts 2012 beginShape ();
curveVertex (x
float x, y, dia; curveVertex (x
curveVertex (x
void setup() curveVertex (x
{ curveVertex (x
size(400, 400); curveVertex (x
x = 150; endShape ();
y = 150;
dia = 200; //J
stroke(0, 255, 0
smooth (); beginShape();
background(0); curveVertex (x
} curveVertex (x
curveVertex (x
void draw() curveVertex (x
{ curveVertex (x
strokeWeight (.05*dia); endShape ();
line(x - .3*dia,
// Surrounding Background x —-.3*dia,
£i11(0)
stroke(200, 200, 0); beginShape();
beginShape(); curveVertex (x -
vertex (x, y-dia/2); curveVertex (x -
vertex (x + dia/3, y-dia/3); curveVertex (x -
vertex(x + dia/2, vy)i curveVertex (x -
vertex (x + dia/3, y+dia/3); curveVertex (x -
vertex (x, y+dia/2); endShape ();
vertex (x - dia/3, y+dia/3);
vertex(x - dia/2, y); // A right side
vertex(x - dia/3, y-dia/3); stroke(0, 0, 255
endShape (CLOSE) ; beginShape();
curveVertex (x
noFill(); curveVertex (x
beginShape(); curveVertex (x
vertex (x, y-dia/1.5); curveVertex (x
vertex(x + dia/2.5, y-dia/2.5); curveVertex (x
vertex(x + dia/l1.5, v); curveVertex (x
vertex(x + dia/2.5, y+dia/2.5); curveVertex (x
vertex (x, y+dia/l1.5); curveVertex (x
vertex(x - dia/2.5, y+dia/2.5); curveVertex (x
vertex(x - dia/l1.5, v);: endShape ();
vertex(x - dia/2.5, y-dia/2.5);
endShape (CLOSE) ; // a left side
beginShape ();
// First part of R curveVertex (x
stroke(255, 0, 0); curveVertex (x
beginShape(); curveVertex (x
curveVertex(x - .2*dia, y + .5*dia); curveVertex (x
curveVertex(x - .2*dia, y + .4*dia); curveVertex (x
curveVertex (x - .2*dia, y) ; curveVertex (x
curveVertex(x - .2*dia, y - .3*dia); curveVertex (x
curveVertex(x - .l*dia, y - .4*dia); curveVertex (x
curveVertex (x + .l*dia, y - .4*dia); curveVertex (x
curveVertex (x + .2*dia, y - .3*dia); // control point
curveVertex (x + .2*dia, y - .05*dia);
curveVertex (x + .l*dia, y) ;
curveVertex (x Y) // a horizontal
curveVertex (x - .2*dia, y) ; line(x +.21*dia,
curveVertex(x - .3*dia, y -.2*dia)
endShape () }

+ + +

.3*dia, y -.2*dia)
.2*dia, y)
r Y)i
.2*dia, y + .l1*dia);
.2*dia, y + .4*dia);
.2*dia, y + .5*dia);
)i
.4*dia, y - .l*dia);
.35*dia, y - .2*dia);
.3*dia, y - .27*dia);
.24*dia, y - .3*dia);
.17*dia, y - .37*dia);
y - .27*dia,
y + .27*dia);
.25*dia, y + .30*dia);
.3*dia, y + .27*dia);
.35*dia, y + .17*dia);
.40*dia, y)
.5*dia, y + .l*dia);
)i
+.25*dia, y - .4*dia);
+.33*dia, y - .3*dia);
+.39*%dia, y - .2*dia);
+.43*dia, y - .l*dia);
+.45*dia, vy ;
+.42*dia, y + .1*dia);
+.38*dia, y + .2*dia);
+.35*%dia, y + .3*dia);
+.28*dia, y + .3*dia);
+.41*dia, y - .4*dia);
+.33*dia, y - .3*dia);
+.27*dia, y - .2*dia);
+.22*dia, y - .l*dia);
+.21*dia, y ;
+.24*dia, y + .l*dia);
+.28*dia, y + .2*dia);
+.29*%dia, y + .3*dia);
+.25*%dia, y + .3*dia);

y, x +.45*dia,

y)i

Copyright Jim Roberts, January 2013 Pittsburgh, PA 15221

Class Notes Set #3 Page 6

Using this idea of who defines the function and who calls them we can add a third
dimension - when are they called:

We call Processing’s functions when we need them.

Processing calls setup() if we define it

Processing calls draw() if we define it.

There are two more additions to this family of function descriptions:
Next time we will look at functions that Processing calls if we define them
when certain actions or events occur.
In the following class we will look at functions that we define and we call.

Beginning with Homework #3, we will always use a draw() and a setup()
function in our code.

And now... Variables...

Now, let’s apply this idea of ownership and use to variables. Last time we introduced
you to the variables x, y, and wd and ht:
float x, y, wd, ht;

The line of code declares the variables X, y, and dia as variables that can store a
decimal number or a float. This line of code means that we own them.

And we use them whenwe initialize them or assign them meaningful values:
X = 100;

y = 100;
wd = 50;
ht = 50;

Processing does not own or assign them values. It will change their values if we tell it
to:
Xx=x%*2;
and Processing will look up their values and use them to do something
ellipse(x, y, wd, ht);
but Processing will not alter them or look them up unless we it to do so.

We will call these variables global variables because they are globally available for use
anywhere in our program.

Copyright Jim Roberts, January 2013 Pittsburgh, PA 15221

Class Notes

Set #3 Page 7

Processing has its own variables. Jim calls the system variables. In general when you
read or hear the word system, we are referring to Processing or the operating system
on your computer or an part of them that is against us ... be very careful... sorry...

System variables are variables that Processing declares and assigns values. Processing
changes their values as needed. We can change them BUT WE MUST NEVER DO THIS
because the results can be disastrous. We can use them in our code but we must never
change their values.

Here are a few of the system variables you might be able to use in some way in

homework #3:
This is the horizontal dimension of the window. Its default value is
width 100. If we call the size function, the first argument is used as the
value of width.
This is the vertical dimension of the window. Its default value is 100.
height If we call the size function, the second argument is used as the value
of width.
mouseX This is the x or horizontal location of the mouse in the window this
frame’.
mouseY This is the y or vertical location of the mouse in the window this
frame.
pmouseX This is the x or horizontal location of the mouse in the window last
frame.
pmouseY This is the y or vertical location of the mouse in the window last
frame.
frameCount | This is the number of this frame’.

One more thing - you may want to look up the function random() in the API. It might
be useful in homework #3 also.

? We will explain “this frame” in class.

3 Ditto. ..

Copyright Jim Roberts, January 2013 Pittsburgh, PA 15221

