
Homework 6: Algol and Continuations
15-814: Types and Programming Languages

Fall 2017
Instructor: Karl Crary
TA: Yong Kiam Tan

Out: Nov 15, 2017 (10 pm)
Due: Dec 4, 2017 (11 pm)

Notes:

• Welcome to 15-814’s sixth homework assignment!

• Please email your work as a PDF file to yongkiat@cs.cmu.edu titled “15-814 Home-
work 6”. Your PDF should be named “<your-name>-hw6-sol.pdf”.

1 Modernized Algol

In this section, we will examine an extension to MA, the language with a modal separation
between expressions and commands described in PFPL 34.

1.1 References for Mutable Data Structures

In order for mutable structures to be useful, it is better to work in the variant of MA with free
assignables and references. As we did in class, we will omit the signature for assignables1. The
rule for declaring a new (free) assignable is shown below:

e val
dcl(e; a.m) ‖ µ 7→ m ‖ µ⊗ a ↪→ e

(Dcl-I)

The reference type τ ref internalizes assignable symbols as data. While the functionality of
the reference type can be encoded in MA using capabilities (PFPL 35.1), a primitive reference
type is better-behaved (and more convenient). Since the reference type cannot safely be mobile,
these are mostly useful with free assignables.

Γ ` &a : τ ref
(Ref)

Γ ` e : τ ref
Γ ` ∗e ∼: τ (Getref)

Γ ` e1 : τ ref Γ ` e2 : τ

Γ ` e1∗=e2 ∼: τ
(Setref)

Consider the following C data structure:

typedef struct tree_data tree;

struct tree_data {

int leaf_value;

tree *left;

tree *right;

};

1See PFPL 35.3 for a complete treatment.
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Now that we have covered recursive types and mutable state, we can give this a proper treatment.
Note that reference cells introduce the possibility of circular data structures, so this is different
from the inductive type of trees.

Task 1 Give a definition of the type tree* in MA with recursive types and a type int as
presented above. (Hint: your answer should adequately handle null pointers.)

Task 2 We previously concluded that trees are better encoded using sum types. For each of the
following specifications, define a type τ tree of mutable trees with the described behavior. In
each case, an element of a tree type should consist either of a leaf with a value of type τ or of
two subtrees.

(a) A mutable tree can be changed to a leaf (by supplying a value of type τ) or to a node (by
supplying a new pair of mutable subtrees).

(b) A mutable tree is permanently either a leaf or a node with two subtrees. Leaves cannot be
updated. However, a node can be mutated by modifying one of its two subtrees.

(c) A mutable tree can only be updated by providing a whole new tree; its subparts cannot be
modified in isolation.

Task 3 For the encoding of τ tree you defined in Task 2(a), define a function

tmap : (τ → τ)→ τ tree→ unit cmd

so that tmap f t applies the function f to each leaf in t in place. You may use fix (see
Homework 5) in your answer. Briefly explain the intuition behind your answer. You do not
have to consider the behavior on tmap on circular trees.

Task 4 For each of the following alternate type specifications below, explain informally whether
it is possible to define a term of said type with the same or similar behavior as in the previous
task. If it is possible, describe any difference in functionality between the two.

(a) (τ → τ)→ τ tree→ unit

(b) (τ → τ) cmd→ τ tree→ unit cmd

(c) (τ → τ cmd)→ τ tree→ unit cmd

(d) (τ → τ)→ (τ tree→ unit) cmd

1.2 Exceptions

In this section, we will consider adding an exception mechanism to MA at the level of commands.
Assume we have fixed a type τexn and are working in MA with free assignables. In order to
deal with control flow, we will a control stack-style dynamics, which we will specify via states
k B m, representing execution of a command, k C v, representing normal return, and k J v,
representing exceptional return. Each of these will be accompanied by a store µ.
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Expressions will be evaluated independently of the store and control stack with an evaluation
dynamics e ⇓ v (the choice of evaluation dynamics is simply to save space on rules, since
expressions are not our focus). For example, we use the following rules for ret and dcl:

e ⇓ v
µ ‖ k B ret(e) 7→ µ ‖ k C v

(Ret-I)

e ⇓ v
µ ‖ k B dcl(e; a.m) 7→ µ⊗ a ↪→ v ‖ k Bm

(Decl-I)

Exceptions are implemented via the raise and try commands.

Γ ` e : τexn
Γ ` raise{τ}(e) ∼: τ

(Raise)
Γ ` m1 ∼ τ Γ, x : τexn ` m2 ∼: τ

Γ ` try(m1;x.m2) ∼: τ
(Try)

e ⇓ v
µ ‖ k B raise{τ}(e) 7→ µ ‖ k J v

µ ‖ k B try(m1;x.m2) 7→ µ ‖ k; try(−;x.m2)Bm1

µ ‖ k; try(−;x.m2)C v 7→ µ ‖ k C v

µ ‖ k; try(−;x.m2) J v 7→ µ ‖ k B [v/x]m2

Task 5 Give control stack dynamics rules for bnd. (Hint: remember to handle cases involving
exceptions.)

Task 6 We can also add exceptions to MA with scoped assignables. Recall that in this setup,
(Dcl-I) is different: rather than reducing a declaration dcl(v; a.m) by adding a ↪→ v to the
store and deleting the declaration, we push the declaration onto the stack and continue as m.
As a result, we can do away with the store and instead maintain the values of assignables on the
control stack. In this version, we will use states k Bm, k C v, and k J v.

e ⇓ v
k B dcl(e; a.m) 7→ k; dcl(v; a.−)Bm

(Decl-I)

(a) What restriction to the exception setup is necessary to ensure type safety if we use scoped
assignables? Give an example of how type safety can fail otherwise.

(b) Finish the set of dynamics rules for dcl(e; a.m) for this setup. Give rules for getting an
assignable (@a) and setting an assignable (a := e). (Hint: you may find it useful to define
auxiliary judgments to search for and update assignable values in the control stack.)

(c) Which of the rules you gave in (b) is the restriction you described in (a) necessary for type
preservation? Why?
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2 Continuations

In this section, we will write some programs using continuations and show how to encode
continuations in a language without them. We will start with a language with continuations
which is evaluated using a control stack.

τ ::= nat | τ → τ | τ × τ | τ + τ | τ cont

e ::= · · · | cont(k) | letcc{τ}(x.e) | throw{τ}(e; e)
k ::= ε | k; f
f ::= · · · | throw{τ}(−; e) | throw{τ}(e;−)

We use an eager evaluation strategy for all of the constructs in the language. Evaluation of
continuations is given by the following rules (see PFPL 30.2 for more details and statics rules).

k B cont(k′) 7−→ k C cont(k′) k B letcc{τ}(x.e) 7−→ k B [cont(k)/x]e

k B throw{τ}(e1; e2) 7−→ k; throw{τ}(−; e2)B e1

e1 val

k; throw{τ}(−; e2)C e1 7−→ k; throw{τ}(e1;−)B e2

e1 val

k; throw{τ}(e1;−)C cont(k′) 7−→ k′ C e1

2.1 Programming with Continuations

To start off, we will write a few basic programs with continuations. An example which may be
useful in Task 7, is the function ccwf : (τ1 → τ2)→ (τ2 cont→ τ1 cont), “compose continuation
with function.”

ccwf , λf :τ1 → τ2.λk:τ2 cont.
letcc{τ1 cont}(ret.throw{τ1 cont}(f(letcc{τ1}(r.throw{τ1}(r; ret))); k))

How does this function work? Given f : τ1 → τ2 and k : τ2 cont, let us consider what would
happen if we threw some value e : τ1 to the continuation ccwf f k : τ1 cont. First, we push the
throw onto the stack. (For our purposes, it does not matter what type we give the throw.)

ε B throw{. . .}(e; ccwf f k)
7→∗ ε; throw{. . .}(e;−) B ccwf f k

Now we evaluate ccwf f k. After stepping through the application to f and k, we save the
current continuation (ε; throw{. . .}(e;−)) in the variable ret (which we will continue to write
as ret for sake of space). We then begin computing a value of type τ2 which we will eventually
throw to k.

7→∗ ε; throw{. . .}(e;−); throw{τ2}(−; k) B f(letcc{τ1}(r.throw{τ1}(r; ret)))

Assuming f is a value, we push an application frame onto the stack. We again save the current
continuation, which at this point expects a value of type τ1, in the variable r.

7→∗ ε; throw{. . .}(e;−); throw{τ2}(−; k); f(−) B letcc{τ1}(r.throw{τ1}(r; ret))
7→∗ ε; throw{. . .}(e;−); throw{τ2}(−; k); f(−) B throw{τ1}(r; ret)

Finally, we throw r to the continuation ret. The current stack is erased and replaced with the
stack stored in ret, which was ε; throw{τ1}(e;−).

7→∗ ε; throw{. . .}(e;−) B r
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Since r is a value, we execute the throw at the top of the stack. It replaces the stack with r,
which is ε; throw{. . .}(e;−); throw{τ2}(−; k); f(−), and continues by evaluating e.

7→∗ ε; throw{. . .}(e;−); throw{τ2}(−; k); f(−) B e

If f(e) evaluates to some value v, then after said evaluation takes place, we execute the throw

at the top of the stack, which throws v to k, leaving us in the state

7→∗ k B v

In the end, throwing a value e to (ccwf f k) amounts to throwing f(e) to k.

Task 7 Define programs with the following types. You may use ccwf in your definitions.

1. lem : τ + τ cont

2. dne : τ cont cont→ τ

3. cps : (τ1 → τ2)→ (τ1 cont + τ2)

(Note: if we interpret these types as propositions by treating (−) cont as logical negation ¬(−),
then these are tautologies of classical propositional logic.)

Task 8 Take τ = int in the previous task, and consider the following expression e : int defined
using your implementation of lem.

e , case lem {
l · x ↪→ 2 ∗ x;
r · c ↪→ throw{int}(6; c)

}

What is the result of evaluating ε B e? You do not have to write out the stack machine steps,
but give an informal explanation of the evaluation process.

2.2 Translating Continuations

In this section, we will show how to translate programs in a language K with continuations into
a language I without them. The theorem we prove will have the following form:

Theorem 1 Fix a type ρ in I. There are translations ||−||, |−| from types in K to types in
I and a translation −̂ from well-typed terms in K to terms in I, all defined in terms of ρ. If
Γ `K e : τ , then ||Γ|| `I ê : |τ |. (Here, ||−|| is extended to a translation of contexts by translating
the type of each variable.)

Of course, the value of this theorem depends on how we define ||−||, |−| and −̂. (Our definition
will satisfy a correctness theorem comparing the results of evaluating e and ê, but we will not
discuss this here.) We start by defining the translations of types ||τ || and |τ |. These are defined
by mutual recursion. First, we have

|τ | , (||τ || → ρ)→ ρ
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The type ρ represents the type of the “final result.” A value of type |τ | accepts a “||τ || continu-
ation,” a term which computes a ρ from a ||τ ||, and uses it to compute such a ρ. ||τ || is defined
inductively on the structure of τ . Assume that K and I support natural numbers, products, and
functions. We define

||nat|| , nat

||τ1 × τ2|| , ||τ1|| × ||τ2||
||τ2 → τ1|| , ||τ2|| → |τ1|
||τ cont|| , ||τ || → ρ

The translation of context |Γ| is simply given by translating the type of each variable. Now,
we will given the translation of expressions. This is a type-directed translation – the translation
of some expression e with Γ `K e : τ is defined by induction on its typing derivation. We will
specify it by defining a judgment Γ ` e : τ  ê, which expresses that Γ `K e : τ translates
to ê and has a case for each typing rule in K. After giving the definition, we will show that
||Γ|| `I ê : |τ |. We start with the rules for variables and natural numbers.

Γ, x : τ ` x : τ  λk. k(x)
(Tr-Var)

Γ ` z : nat λk. k(z)
(Tr-Z) Γ ` e : nat ê

Γ ` s(e) : nat λk. ê(λx. k(s(x)))
(Tr-S)

Γ ` e : nat ê Γ ` e0 : τ  ê0 Γ, x : nat ` e1 : τ  ê1
Γ ` ifz(e; e0;x.e1) : τ  λk. ê(λy. ifz(y; ê0k;x.ê1k))

(Tr-Ifz)

To understand these rules, remember that each translation ê should be an expression of type
|τ | = (||τ || → ρ) → ρ, a function which takes a “continuation” and returns a result (a term of
type ρ). It is important to distinguish ||τ || from (||τ || → ρ) → ρ: although there is an obvious
embedding from the former into the latter, taking e to λk. k(e), such a transformation is not
reversible in general. In other words, while we might think of ê as a function that, given a
“continuation” k : ||τ || → ρ, supplies “e” to k, this is not always accurate (although it is true
in the case of the rules (Tr-Var) and (Tr-Z)). For one thing, this would require translating e
into a I term of type ||τ ||, which is not always possible. Moreover, ê can use k in other ways.
We can more accurately say that ê : |τ | will compute a ρ if we tell it how we would compute a
ρ given a ||τ ||, but it may accomplish this in ways other than “feeding in e.”

With this in mind, we can go through the rules for nat. The translation for z is simple: given
a “continuation” k : nat → ρ, it simply invokes k on z. For s(e), we start by translating e
into ê. After taking an argument “continuation” k : nat → ρ, we apply ê to λx. k(s(x)), the
composition k ◦ s. Put informally, we tell ê that we want to “use e” by first taking its successor
and then continuing with k. Finally, the rule for ifz(e; e0;x.e1) supplies the translation ê with
the continuation λy. ifz(y; ê0k;x.ê1k), which uses y : nat by checking if it is zero and continuing
with either ê0k or ê1k as appropriate.

Task 9 Define translation rules for the product type τ1 × τ2 (i.e., for pairing and the two pro-
jections). Make sure your definitions have the correct types.

The translation becomes more interesting at the function type.

Γ, x : τ2 ` e : τ1  ê

Γ ` (λx:τ2.e) : τ2 → τ1  λk. k(λx:||τ2||.ê)
(Tr-Lam)

Recall that ||τ2 → τ1|| , ||τ2|| → |τ1|. If our translation has the right type behavior, then ||Γ||, x :
||τ2|| ` ê : |τ1|. Thus, λx. ê has type ||τ2 → τ1||, so we can supply it to the continuation k :
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||τ2 → τ1|| → ρ. The key here is that hypotheses are translated with ||−|| and conclusions with
|−|, so it is natural to translate functions, which internalize a hypothetical, with ||τ2 → τ1|| ,
||τ2|| → |τ1|.

Task 10 Give a translation rule for function application. For sake of intuition, you may find
it useful to note the following: if we expand the definition of ||τ2 → τ1|| another step as ||τ2|| →
(||τ1|| → ρ)→ ρ, we see that a translated function takes an argument of type ||τ2|| and a “return
address” continuation which specifies how to continue with the result of type ||τ1||.

Finally, we come to continuations.

Task 11 Give translation rules for letcc{τ}(x.e) and throw{τ ′}(e1; e2). These are actually
quite simple.

This is enough to cover any program we would write in K, but there is a form of expression
arising in execution which we have not handled – the term cont(k) where k is a stack. In order
to handle this case (and in order to state a correctness of translation result with respect to
evaluation), we would have to define a translation of stack frames. We will not pursue this here.
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