
15-814 Homework 6

December 6, 2017

1 Modernized Algol

Note: this section should have explicitly referred to the version of MA given in class,
where we used bnd(m;x.m) and force(e) rather than bnd(e;x.m).

Task 1 Give a definition of the type tree* in MA with recursive types and a type int as presented
above. (Hint: your answer should adequately handle null pointers.)

Solution: tree∗ is a pointer to a tree, which can be a null pointer (represented with an option type).
tree∗ = µα.unit + (int× α× α) ref

Task 2 We previously concluded that trees are better encoded using sum types. For each of the follow-
ing specifications, define a type τ tree of mutable trees with the described behavior. In each case, an
element of a tree type should consist either of a leaf with a value of type τ or of two subtrees.

(a) A mutable tree can be changed to a leaf (by supplying a value of type τ) or to a node (by supplying
a new pair of mutable subtrees).

(b) A mutable tree is permanently either a leaf or a node with two subtrees. Leaves cannot be updated.
However, a node can be mutated by modifying one of its two subtrees.

(c) A mutable tree can only be updated by providing a whole new tree; its subparts cannot be modified
in isolation.

Solution: The immutable tree is given by µα.τ + α × α. The mutability behavior is controlled by
placing ref in appropriate positions (i.e. at the parts of the tree that can be modified).

(a) τ tree = µα.(τ + α× α) ref

(b) τ tree = µα.τ + α ref× α ref

(c) τ tree = (µα.τ + α× α) ref

Task 3 For the encoding of τ tree you defined in Task 2(a), define a function

tmap : (τ → τ)→ τ tree→ unit cmd

so that tmap f t applies the function f to each leaf in t in place. You may use fix (see Homework
5) in your answer. Briefly explain the intuition behind your answer. You do not have to consider the
behavior on tmap on circular trees.

Solution: In ML:

1

(* This encodes that we can change an entire branch to a leaf or vice versa *)

datatype ’a tr = Tree of ’a tn ref

and ’a tn = Leaf of ’a | Branch of (’a tr) * (’a tr);

fun tmap f (Tree e) =

let val u = !e in

case u of

Leaf v => e := Leaf (f v)

| Branch (l,r) =>

(tmap f l;tmap f r)

end;

Writing t = (τ → τ) → τ tree → unit cmd. The following are abbreviations (with free variables) so
that the final definition of tmap can fit on a line.
On a leaf, we replace the leave with the result of applying f :

lf = cmd(bnd(unfold(e)∗=inl((f v)); .ret(〈〉)))

On a branch, we do not modify the branch, but recurse into its sub-trees:

br = cmd(bnd(force(m f π1b); .force(m f π2b)))

Putting everything together:

tmap = fix{t}(m.λf :τ → τ.λe:τ tree.cmd(bnd(∗unfold(e);u.force(case u {v.lf; b.br}))))

Task 4 For each of the following alternate type specifications below, explain informally whether it is
possible to define a term of said type with the same or similar behavior as in the previous task. If it is
possible, describe any difference in functionality between the two.

(a) (τ → τ)→ τ tree→ unit

(b) (τ → τ) cmd→ τ tree→ unit cmd

(c) (τ → τ cmd)→ τ tree→ unit cmd

(d) (τ → τ)→ (τ tree→ unit) cmd

Solution:

(a) Not possible to do the tree update in place since the type does not have cmd anywhere in it. A
function of this type cannot contain encapsulated commands, and so cannot modify the existing
references. It can, however, recreate a brand new tree with the leaf values updated.

(b) This is possible. Whenever f is called above, we replace it with a bind instead. This gives the
function being mapped the chance to produce side effects whenever it is called. Alternatively, we
can bind it once at the start to get the side effect only once.

(c) This is also possible. In this case, whenever we have f v, we replace it with a bind for its side
effects. This rules out the second possibility in (b) above. On the other hand, the side effect
produced can now depend on v.

(d) Not possible. If we had tmap f , then the only thing we can do with it is execute it to get a function
of type τ tree→ unit. However, this execution cannot possibly modify the tree since it has not
even been passed the tree yet. Moreover, the resulting function’s type does not have cmd so we
are back to the same reasoning as (a).

2

1.1 Exceptions

Task 5 Give control stack dynamics rules for bnd. (Hint: remember to handle cases involving excep-
tions.)

Solution:

µ ‖ k B bnd(m1;x.m2) 7→ µ ‖ k; bnd(−;x.m2)Bm1
(Bnd-M)

µ ‖ k; bnd(−;x.m)C v 7→ µ ‖ k B [v/x]m
(Bnd-Ret)

µ ‖ k; bnd(−;x.m) J v 7→ µ ‖ k J v
(Bnd-Exn)

Task 6 We can also add exceptions to MA with scoped assignables. Recall that in this setup, (Dcl-I)
is different: rather than reducing a declaration dcl(v; a.m) by adding a ↪→ v to the store and deleting
the declaration, we push the declaration onto the stack and continue as m. As a result, we can do away
with the store and instead maintain the values of assignables on the control stack. In this version, we
will use states k Bm, k C v, and k J v.

e ⇓ v
k B dcl(e; a.m) 7→ k; dcl(v; a.−)Bm

(Decl-I)

(a) What restriction to the exception setup is necessary to ensure type safety if we use scoped assignables?
Give an example of how type safety can fail otherwise.

(b) Finish the set of dynamics rules for dcl(e; a.m) for this setup. Give rules for getting an assignable
(@a) and setting an assignable (a := e). (Hint: you may find it useful to define auxiliary judgments
to search for and update assignable values in the control stack.)

(c) Which of the rules you gave in (b) is the restriction you described in (a) necessary for type preser-
vation? Why?

Solution:

(a) The type chosen for τexn must be a mobile type. Otherwise, it would be possible to leak assignables
out via the exception mechanism. As an example, suppose that τexn were nat cmd. Then we could
write try(dcl(e; a.raise{τ}(cmd(@a)));x.m). Inside m, we could mention a outside its scope.

(b) Note that the definitions for read and write implicitly force the assignable being read/written to
be on the stack.

k; dcl(v; a.−)C v′ 7→ k C v′
(Decl-Ret)

k; dcl(v; a.−) J v′ 7→ k J v′
(Decl-Exn)

read a (k; dcl(v; a.−)) ↓ v
(Stack-Read1)

read a k ↓ v f is not of the form dcl(v; a.−)

read a (k; f) ↓ v
(Stack-Read2)

read a k ↓ v
k B@a 7→ k C v

(Get)

3

write a v′ (k; dcl(v; a.−)) ↑ (k; dcl(v′; a.−))
(Stack-Write1)

write a v′ k ↑ k′ f is not of the form dcl(v; a.−)

write a v′ (k; f) ↑ (k′; f)
(Stack-Write2)

e ⇓ v write a v k ↑ k′

k B a := e 7→ k′ C v
(Set)

(c) It is necessary for (Decl-Exn). Following the example in (a), if we had an immobile nat cmd

for the exception type, then in (Decl-Exn) we would be taking a step with the exception value
v′ = cmd(ret(a)). The type is not preserved after the step because a is no longer in the signature
for the stack.

2 Continuations

Task 7 Define programs with the following types. You may use ccwf in your definitions.

1. lem : τ + τ cont

2. dne : τ cont cont→ τ

3. cps : (τ1 → τ2)→ (τ1 cont + τ2)

(Note: if we interpret these types as propositions by treating (−) cont as logical negation ¬(−), then
these are tautologies of classical propositional logic.)

Solution:

1. In the following, we can type λx:τ.inl(x) with τ → (τ + τ cont).

lem = letcc{τ + τ cont}(x.inr(ccwf (λy:τ.inl(y)) x))

LEM lets us do the next two by “casing” on P ∨ ¬P .

2. dne = λx:τ cont cont.case lem {l.l; r.throw{τ}(r;x)}

3. For this we use lem at type τ2.

cps = λf :τ1 → τ2.case lem {l.inr(l); r.inl(ccwf f r)}

Task 8 Take τ = int in the previous task, and consider the following expression e : int defined using
your implementation of lem.

e , case lem {
inl(x) ↪→ 2 ∗ x;
inr(c) ↪→ throw{int}(6; c)

}

What is the result of evaluating εB e? You do not have to write out the stack machine steps, but give
an informal explanation of the evaluation process.

Solution:

1. The case expression (with a hole in place of lem) is pushed onto the stack and we evaluate lem.

4

2. Evaluating lem returns inr(ccwf (λy:τ.inl(y)) x), where x is the stack containing the above-
mentioned case expression.

3. We put this value back into the hole in the case expression.

4. Since this is the right of a sum, the case expression takes the right case and so 6 is thrown to the
continuation, ccwf (λy:τ.inl(y)) x. By the property of ccwf, this eventually results in inl(6)
being thrown to x.

5. Now, we are again in the case expression (that was captured in x), but now we have the left case
instead. Therefore, we get the result 12 in the final stack.

2.1 Translating Continuations

Task 9 Define translation rules for the product type τ1× τ2 (i.e., for pairing and the two projections).
Make sure your definitions have the correct types.

Solution:
Define curry = λf :τ1 × τ2 → τ.λx:τ1.λy:τ2.f 〈x, y〉. This makes the continuation k in the conclusion
curried, so we can partially apply it.

Γ ` e1 : τ1 ê1 Γ ` e2 : τ2 ê2
Γ ` 〈e1, e2〉 : τ1 × τ2 λk:||τ1 × τ2|| → ρ.ê1(λp:||τ1||.ê2((curry k) p))

Γ ` e : τ1 × τ2 ê

Γ ` π1e : τ1 λk:||τ1|| → ρ.ê(λp:||τ1|| × ||τ2||.k (π1p))

Γ ` e : τ1 × τ2 ê

Γ ` π2e : τ2 λk:||τ2|| → ρ.ê(λp:||τ1|| × ||τ2||.k (π2p))

Task 10 Give a translation rule for function application. For sake of intuition, you may find it useful
to note the following: if we expand the definition of ||τ2 → τ1|| another step as ||τ2|| → (||τ1|| → ρ)→ ρ,
we see that a translated function takes an argument of type ||τ2|| and a “return address” continuation
which specifies how to continue with the result of type ||τ1||.

Solution:

Under the translation, we have ê1 :
(

||τ2→τ1||=||τ2||→(||τ1||→ρ)→ρ︷ ︸︸ ︷
(
(||τ2|| →

|τ1|︷ ︸︸ ︷
(||τ1|| → ρ)→ ρ)

)
→ ρ

)
→ ρ, and ê2 : (||τ2|| → ρ)→ ρ.

Γ ` e1 : τ2 → τ1 ê1 Γ ` e2 : τ2 ê2

Γ ` e1 e2 : τ1 λk:||τ1|| → ρ.ê1
(
λx:||τ2 → τ1||.ê2(λy:||τ2||.x y k)

)
I also accepted the following answer with reversed evaluation order for e1, e2 although strictly

speaking, this would have different operational behavior:

Γ ` e1 : τ2 → τ1 ê1 Γ ` e2 : τ2 ê2

Γ ` e1 e2 : τ1 λk:||τ1|| → ρ.ê2
(
λx:||τ2||.ê1(λy:||τ2 → τ1||.y x k)

)
Task 11 Give translation rules for letcc{τ}(x.e) and throw{τ ′}(e1; e2). These are actually quite
simple.

Solution:
Γ, x : τ cont ` e : τ ê

Γ ` letcc{τ}(x.e) : τ λx:||τ || → ρ.ê x

5

The following translation for throw is the straightforward answer (it is also well-typed) but it has
the wrong order of evaluation:

Γ ` e1 : τ ê1 Γ ` e2 : τ cont ê2
Γ ` throw{τ ′}(e1; e2) : τ ′ λ :||τ ′|| → ρ.ê2 ê1

We really want to evaluate ê1 first:

Γ ` e1 : τ ê1 Γ ` e2 : τ cont ê2
Γ ` throw{τ ′}(e1; e2) : τ ′ λ :||τ ′|| → ρ.e1(λx:||τ ||.ê2(λy:||τ || → ρ.y x))

Note that in both cases, we discard the input continuation.

6

	Modernized Algol
	Exceptions

	Continuations
	Translating Continuations

