
15-814 Homework hw5

December 1, 2017

1 Halting Problem in PCF

Task 1 Prove that H is not definable in PCF.

Solution: Suppose H : (nat→ nat)→ nat is definable. Consider the term:

D = fix f : nat→ nat.λ :nat.ifz(H f ; Ω;x.z)

where Ω = fix x : nat.x, ` Ω : nat, and Ω diverges.
We have:

D z 7→(λ :nat.ifz(H D; Ω;x.z)) z

7→ifz(H D; Ω;x.z)

By assumption, we know that either H D 7→∗ z or H D 7→∗ s(z).
In the first case, D z converges by assumption. However, we also take the first branch above, so

D z 7→∗ Ω, and so D z diverges. By determinism D z cannot both diverge and converge, and so this
case leads to a contradiction.

In the latter case, D z diverges by assumption. Here, we take the second branch, so D z 7→∗ z, so
D z converges. This again leads to a contradiction with determinism of the language.

Task 2 Prove that H ′ is not definable in PCF.

Solution: Suppose that H ′ : nat→ nat→ nat is definable. Consider the term:

D′ = λx:nat.ifz(H ′ x x; Ω; y.z)

where Ω diverges, and D′ : nat→ nat. We have D′pD′q 7→ ifz(H ′pD′qpD′q; Ω; y.z).
Now, by assumption, either H ′pD′qpD′q 7→∗ z or H ′pD′qpD′q 7→∗ s(z). In the first case, we

have that D′pD′q converges, but this is a contradiction since D′pD′q 7→∗ ifz(z; Ω; y.z) 7→ Ω, which
diverges. In the second case, we have that D′pD′q diverges, but this is again a contradiction since
D′pD′q 7→∗ ifz(s(z); Ω; y.z) 7→ z, which converges.

2 Defining Streams

I will use ML code to illustrate these answers. The datatype and selector definitions for streams are
given below (modulo using ML integers instead of natural numbers):

datatype stream = Cons of unit -> int * stream

fun hd (Cons f) = #1 (f ())

fun tl (Cons f) = #2 (f ())

1



Task 3 Define the function fromLoop : (α→ α× nat)→ α→ stream, which takes a value v of type
α and a function f of type α → α × nat, successively applies f to v to get values of type nat, and
constructs a stream from these natural numbers.

Solution: In ML:

fun fromLoop f v = Cons(fn ()=> let val (l,r) = f v in (r,fromLoop f l) end);

Translating this into FPC, writing t = (α→ α× nat)→ α→ stream:

fromLoop = fix x : t.λf :α→ α× nat.λv:α.fold[α.unit→ nat× α](λ :unit.〈π2(f v), x f (π1(f v))〉)

Task 4 Use fromLoop to construct the following two streams.

1. Given a natural number k, a stream of natural numbers starting from k.

2. The stream of natural numbers.

Solution: In ML:

fun natstrk k = fromLoop (fn v => (v+1,v)) k;

val natstr = natstrk 0;

Behavior:

> hd natstr

val it = 0: int

> hd (tl (tl (tl natstr)))

val it = 3: int

Translating:

natstrk = λk:nat.fromLoop (λv:nat.〈(s(v), v)〉) k

natstr = natstrk z

Task 5 Define the function, map : (nat → nat) → stream → stream, which takes a function f and
stream s and applies f to every element in the stream s.

Solution: In ML:

fun map f s = Cons(fn () => (f (hd s),map f (tl s)));

Translating, writing t = (nat→ nat)→ stream→ stream:

map = fix x : t.λf :nat→ nat.λs:stream.fold[α.unit→ nat× α](λ :unit.〈f (hd s), x f (tl s))〉)

Task 6 Define the function streamfix : (stream → stream) → stream, which takes a function f
and applies that successively to obtain a stream. (Carefully define this function considering that we
are working in the eager, call-by-value version of FPC.)

Solution: The fixpoint equation can just be written in ML, and this would diverge when given f :

fun streamfixbad f = f (streamfixbad f);

Instead, we must manually “unroll” the stream once:

fun streamfix f =

Cons (fn () => (hd (f (streamfix f)),tl (f (streamfix f))))

2



Translating, writing t = (stream→ stream)→ stream:

streamfix = fix x : t.λf :stream→ stream.fold[α.unit→ nat× α](λ :unit.〈hd (f (x f)), tl (f (x f))〉)

Task 7 Note that the stream of natural numbers has the special property that it can be obtained by
adding 1 to every element in the stream and then prepending 0 to the result. Use this property to define
the stream of natural numbers using map and streamfix.

Solution: In ML:

val natstr = streamfix (fn s => Cons (fn _ => (0,map (fn n=>n+1) s) ));

Behavior:

> hd natstr

val it = 0: int

> hd (tl (tl (tl natstr)))

val it = 3: int

Translating:

suc = λn:nat.s(n)

natstr2 = streamfix (λs:stream.fold[α.unit→ nat× α](λ :unit.〈z, map suc s〉))

Task 8 What would happen if you use streamfix with the identity function?

Solution: It returns a stream but the stream diverges when it is forced, e.g. when hd or tl is called
on it.

> val foo = streamfix (fn s => s)

val foo = Cons fn: stream

hd foo

(* diverges *)

tl foo

(* diverges *)

3 Monadization

Task 9 Define e inductively for each expression e in L1.

Solution: The translation is mostly straightforward if we follow the types.

input = input output(e) = bnd(e; y.output(y))

x = ret(x) n = ret(n) λx:τ.e = ret(λx:τ .cmd(e))

ifz(e1; e2;x.e3) = bnd(e1;x1.force(ifz(x1; cmd(e2);x.cmd(e3))))

e1 e2 = bnd(e1;x1.bnd(e2;x2.force(x1 x2)))

We assume that products are eager:

〈e1, e2〉 = bnd(e1;x1.bnd(e2;x2.ret(〈x1, x2〉)))

3



π1e = bnd(e;x.ret(π1x)) π2e = bnd(e;x.ret(π2x))

Note: I am not sure if there is an easy solution for the fix case that does not diverge. I accepted
all solutions that are well-typed.

I got the following solution from students in class, I think it has the right behavior:

fix x : τ.e = force(fix f : τ cmd.cmd([force(f)/ret(x)]e))

My original solution diverges:

fix x : τ.e = force(fix f : τ cmd.cmd(bnd(force(f);x.e)))

4


	Halting Problem in PCF
	Defining Streams
	Monadization

