
Homework 4: Abstraction and Free Theorems
15-814: Types and Programming Languages

Fall 2017
Instructor: Karl Crary
TA: Yong Kiam Tan

Out: Oct 16, 2017 (03 pm)
Due: Oct 30, 2017 (11 pm)

Notes:

• Welcome to 15-814’s fourth homework assignment!

• Please email your work as a PDF file to yongkiat@cs.cmu.edu titled “15-814 Home-
work 4”. Your PDF should be named “<your-name>-hw4-sol.pdf”.

1 Abstraction

1.1 Abstraction Theorem

The abstraction theorem (or the parametricity theorem) states that if e : τ , then e ∼ e : τ .
We can use this theorem to prove several different properties about expressions of polymorphic
type.

Task 1 Show that there are no expressions e of type ∀α.∀β.α→ β.

Task 2 Show that for any expression e of type ∀α.α→ α→ α and any e1 : τ and e2 : τ , either
e[τ ](e1)(e2) ∼ e1 : τ or e[τ ](e1)(e2) ∼ e2 : τ .

1.2 Data Abstraction

As emphasized in class, data abstraction is one of the most important concepts in computer
science. Let us do an application to get used to this. We will use abstraction to prove that two
module implementations are observationally equivalent.

signature QUEUE =
sig

type queue
val emp : queue
val ins : int ∗ queue −> queue
val rem : queue −> unit + (int ∗ queue)

end

In this signature,

• emp represents the empty queue.

• ins inserts an element to the back of the queue.

1



• rem removes the element at the front of the queue and returns it with the remainder of
the queue, or inl(?) if the queue is empty.

Now, consider the following two implementations of this signature.

structure LQ : QUEUE =
struct

type queue = int list
val emp = [ ]
fun ins (n, l) = append l [n]
fun rem l =

case l of
[ ] => NONE
| x::xs => SOME (x, xs)

end

structure LLQ : QUEUE =
struct

type queue = (int list) ∗ (int list)
val emp = ([ ], [ ])
fun ins (n, (front,back)) = (front, n::back)
fun rem l =

case (front, back) of
([ ], [ ]) => NONE
| (x::xs, ) => SOME (x, (xs, back))
| ([ ], ) => rem (rev back, [ ])

end

Note that the modules return options NONE and SOME. These can be thought of as syntactic
sugar, e.g. think of NONE as inl(?) and SOME (a, b) as inr(〈a,b〉).

In the following tasks, you may assume that the basic types (e.g. int, unit), and type construc-
tors (e.g. τ list, τ1 × τ2, τ1 + τ2, τ option) are already defined. You may also assume that the
definition of ∼ has been appropriately extended for these types.

Task 3 State the abstract type of the signature queue.

Task 4 State a relation R : int list ↔ int list × int list which is closed under all
operations of the signature.

Task 5 Prove that the relation R you defined above is closed under emp.

Task 6 Prove that the relation R you defined above is closed under ins.

Task 7 Prove that the relation R you defined above is closed under rem.

Task 8 Briefly compare the two implementations of queue in terms of time efficiency. Are there
situations where you would prefer one over the other?

2



2 Free Theorems

As we saw in class, we get some theorems for free from the polymorphic type of an expression

Task 9 Consider a function h : ∀α.∀β.α list × β list → (α × β) list (with the type of the
standard zip function). Consider functions a : τA → τ ′A and b : τB → τ ′B. Let a∗ (similarly
for b∗) denote the map of a over a list of type τA, i.e. a∗ takes a list l as argument and
applies a to every element of l. Also, let a × b : τA × τB → τ ′A × τ ′B be the function where
(a× b)〈e1, e2〉 = 〈a e1, b e2〉. Prove that for all e : τA list× τB list:

(a× b)∗(h[τA][τB ] e) ∼ h[τ ′A][τ ′B ]((a∗ × b∗) e) : (τ ′A × τ ′B) list

3


	Abstraction
	Abstraction Theorem
	Data Abstraction

	Free Theorems

