
15-814 Homework 1 Solutions

September 25, 2017

1 Arithmetic

Task 1 Prove the following inversion lemma:

(If Inversion) If Γ ` if(e1, e2, e3) : τ , then Γ ` e1 : bool, Γ ` e2 : τ , and Γ ` e3 : τ .

This seems immediate, but really follows from the induction principle for the typing judgment. (Tip:
Prove that for all Γ, e, τ such that Γ ` e : τ , if e = if(e1, e2, e3) for some e1, e2, e3, then Γ ` e1 : bool,
Γ ` e2 : τ , and Γ ` e3 : τ .)

Solution: We show that for all Γ, e, τ such that Γ ` e : τ , if e = if(e1, e2, e3) for some e1, e2, e3,
then Γ ` e1 : bool, Γ ` e2 : τ , and Γ ` e3 : τ .

The proof proceeds by induction on typing judgments (note that we are considering induction
where the premises of the judgments are available as assumptions).

Case (If): Suppose Γ ` if(e1, e2, e3) : τ , we need to show Γ ` e1 : bool, Γ ` e2 : τ , and Γ ` e3 : τ .
However, these follow directly from the premises of the judgment.

Cases (Hyp), (Num), (True), (False), (Plus), (Times) and (Leq): For each of these rules, we
note that the conclusion is not syntactically of the form e = if(e1, e2, e3). Therefore, the required
property is trivially true.

Task 2 Prove unicity of typing for this language.

(Unicity of Typing) For any Γ, e, τ , τ ′ such that Γ ` e : τ and Γ ` e : τ ′, we have τ = τ ′.
You may assume that any variable appears at most once in a given context.

Solution: We proceed by induction on the typing judgement Γ ` e : τ .

Case e = x (Hyp): By assumption, we have Γ, x : τ ` x : τ and Γ, x : τ ` x : τ ′. By inversion
on the latter judgment and noting that only one instance of x occurs in the context, we have τ = τ ′.

Case e = n (Num): By assumption, we have Γ ` n : nat and Γ ` n : τ ′, i.e. τ = nat. By in-
version on the latter judgment, we have that τ ′ = nat = τ .

Cases (True) and (False): Similar to the (Num) case.

Case e = e1 + e2 (Plus): By assumption, we have Γ ` e1 + e2 : nat and Γ ` e1 + e2 : τ ′, i.e. τ = nat.
By inversion on the latter judgment, we have that τ ′ = nat = τ .

Cases (Times) and (Leq): Similar to the (Plus) case.

Case e = if(e1, e2, e3) (If): By assumption, we have Γ ` if(e1, e2, e3) : τ , Γ ` e2 : τ , and
Γ ` if(e1, e2, e3) : τ ′. By inversion on the last typing judgment, we have Γ ` e2 : τ ′. Hence, by
I.H. on Γ ` e2 : τ , we have τ = τ ′.

1



2 Days of the Week

Task 3 Define the next(d) is d′ judgement which takes a day d and returns the next day, d′. You
should assume that the next day from Sunday is Friday.

Solution:

next(Fri) is Sat
(Fri)

next(Sat) is Sun
(Sat)

next(Sun) is Fri
(Sun)

Task 4 Define the nextn(n, d) is d′ judgement which takes a natural number n, a day d, and returns
the nth day after d. You should make use of the inductive definition of nat.

Solution:

nextn(Z, d) is d
(NextZ)

nextn(n, d) is d′ next(d′) is d′′

nextn(S(n), d) is d′′
(NextSucc)

Task 5 Using your answer to Task 4, extend the static and dynamic semantics of e with the cases for
d and nextn(e1, e2). Your definition should satisfy progress and type preservation, which you will need
to prove below.

Solution:

• Statics

Γ ` d : day
(Day)

Γ ` e1 : nat Γ ` e2 : day

Γ ` nextn(e1, e2) : day
(Nextn)

• Dynamics

d val
(Day-V)

e1 7→ e′1
nextn(e1, e2) 7→ nextn(e′1, e2)

(Nextn-S1)
e1 val e2 7→ e′2

nextn(e1, e2) 7→ nextn(e1, e
′
2)

(Nextn-S2)

nextn(n, d) is d′

nextn(n, d) 7→ d′
(Nextn-I)

3 Type Safety

We will now show type safety for the language, including your extension in Task 5, by proving
progress and type preservation.

Task 6 Carefully state a canonical forms lemma for your extended semantics. You do not have to
prove the lemma, and you may assume it for the rest of your proof.

Solution: Lemma 1 (Canonical Forms) If e val and ` e : τ , then

• if τ = nat then e = n for some natural number n,

• if τ = bool then e = tt or e = ff,

• if τ = day then e = d for some day d.

2



Task 7 Prove progress for your extended semantics, i.e.

(Progress) If ` e : τ , then either e val or there exists e′ such that e 7→ e′.

Solution: We proceed by induction on the typing judgment ` e : τ . (I write the form of ` e : τ
followed by the rulename for each relevant case).

Case (Hyp): This case is vacuous since we are considering closed terms.

Case ` n : nat (Num): We have n val by (Num-V) so we are done.

Cases (True), (False), (Day): Similar to (Num).

Case ` e1 + e2 : nat (Plus): The premises of the rule are: ` e1 : nat and ` e2 : nat. By I.H.
on the first premise, we have that either e1 val or e1 7→ e′1. In the first case, we may further apply the
I.H. on the second premise to get that either e2 val or e2 7→ e′2.

Subcase e1 val, e2 val: Since ` e1 : nat and ` e2 : nat, by canonical forms, we have that e1 = n1, e2 = n2
for some n1, n2. Thus, n1 + n2 7→ n1 + n2 by (Plus-I).

Subcase e1 val, e2 7→ e′2: Then we have e1 + e2 7→ e1 + e′2 by (Plus-S2).

Subcase e1 7→ e′1: Then we have e1 + e2 7→ e′1 + e2 by (Plus-S1).

Cases (Times) (Leq): Similar to (Plus)1

Case ` if(e1, e2, e3) : τ (If) (abbreviated): From the premise of the rule, we have ` e1 : bool.
By I.H. on e1, we have that either e1 val or e1 7→ e′1. In the first case, canonical forms gives us that
e1 = tt or e1 = ff, and we may respectively apply (If-I1) or (If-I2). In the latter case, we may
apply (If-S).

Case ` nextn(e1, e2) : day (Nextn) 2 The premises of the rule are: ` e1 : nat and ` e2 : day.
By I.H. on the first premise, we have that either e1 val or e1 7→ e′1. In the first case, we may further
apply the I.H. on the second premise to get that either e2 val or e2 7→ e′2.

Subcase e1 val, e2 val: Since ` e1 : nat and ` e2 : day, by canonical forms, we have that e1 = n, e2 = d
for some n, d. Moreover, we have that nextn(n, d) is d′ for some d′3. Thus, nextn(n, d) 7→ d′ by
(Nextn-I).

Subcase e1 val, e2 7→ e′2: Then we have nextn(e1, e2) 7→ nextn(e1, e
′
2) by (Nextn-S2).

Subcase e1 7→ e′1: Then we have nextn(e1, e2) 7→ nextn(e′1, e2) by (Nextn-S1).

Task 8 Prove preservation for your extended semantics, i.e.

(Preservation) If ` e : τ and e 7→ e′, then ` e′ : τ .

Solution: We proceed by induction on the dynamics e 7→ e′.

1In the (Leq) case, you will have an additional case split on whether (Leq-I1) or (Leq-I2) applies.
2This case is actually similar to (Plus), but it is good practice to show it again to check that nothing was missed in

Task 5.
3Technically, this needs to be shown by induction on the judgments defined in Tasks 3 and 4.

3



Case e1 + e2 7→ e′1 + e2 (Plus-S1): The premise of the rule is e1 7→ e′1. By inversion on the typing
judgement, we have that ` e1 : nat, i.e. τ = nat. Therefore, by I.H., we have that ` e′1 : nat, and
therefore ` e′1 + e2 : nat by (Plus).

Cases (Plus-S2), (Times-S1), (Times-S2), (Leq-S1), (Leq-S2), (If-S), (Nextn-S1) and (Nextn-S2):
All of these are congruence cases similar to (Plus-S1)4.

Case m + n 7→ m+ n (Plus-I): By inversion, on the typing judgment, we have that τ = nat.
By (Num), ` m+ n : nat.

Cases (Times-I), (Leq-I1), (Leq-I2), (Nextn-I): These are reduction cases similar to (Plus-I).

Case if(tt, e2, e3) 7→ e2 (If-i1): By inversion on the typing judgment, we have that ` e2 : τ and
we are done. The remaing case for (If-I2) is similar.

4I have collapsed all the congruence cases here, but you should be a bit more careful in your proofs. Again, it might
be useful to check the cases for (Nextn-S1) and (Nextn-S2) explicitly to make sure they are correctly defined.

4


	Arithmetic
	Days of the Week
	Type Safety

