15-814 Homework 1 Solutions

September 25, 2017

1 Arithmetic

Task 1 Prove the following inversion lemma:

(If Inversion) If $\Gamma \vdash if(e_1, e_2, e_3) : \tau$, then $\Gamma \vdash e_1 : bool, \Gamma \vdash e_2 : \tau$, and $\Gamma \vdash e_3 : \tau$.

This seems immediate, but really follows from the induction principle for the typing judgment. (Tip: Prove that for all Γ , e, τ such that $\Gamma \vdash e : \tau$, if $e = if(e_1, e_2, e_3)$ for some e_1, e_2, e_3 , then $\Gamma \vdash e_1 : bool$, $\Gamma \vdash e_2 : \tau$, and $\Gamma \vdash e_3 : \tau$.)

Solution: We show that for all Γ , e, τ such that $\Gamma \vdash e : \tau$, if $e = if(e_1, e_2, e_3)$ for some e_1, e_2, e_3 , then $\Gamma \vdash e_1 : bool, \Gamma \vdash e_2 : \tau$, and $\Gamma \vdash e_3 : \tau$.

The proof proceeds by induction on typing judgments (note that we are considering induction where the premises of the judgments are available as assumptions).

Case (IF): Suppose $\Gamma \vdash if(e_1, e_2, e_3) : \tau$, we need to show $\Gamma \vdash e_1 : bool, \Gamma \vdash e_2 : \tau$, and $\Gamma \vdash e_3 : \tau$. However, these follow directly from the premises of the judgment.

Cases (HYP), (NUM), (TRUE), (FALSE), (PLUS), (TIMES) and (LEQ): For each of these rules, we note that the conclusion is not syntactically of the form $e = if(e_1, e_2, e_3)$. Therefore, the required property is trivially true.

Task 2 Prove unicity of typing for this language.

(Unicity of Typing) For any Γ , e, τ , τ' such that $\Gamma \vdash e : \tau$ and $\Gamma \vdash e : \tau'$, we have $\tau = \tau'$. You may assume that any variable appears at most once in a given context.

Solution: We proceed by induction on the typing judgement $\Gamma \vdash e : \tau$.

Case e = x (HYP): By assumption, we have $\Gamma, x : \tau \vdash x : \tau$ and $\Gamma, x : \tau \vdash x : \tau'$. By inversion on the latter judgment and noting that only one instance of x occurs in the context, we have $\tau = \tau'$.

Case $e = \overline{n}$ (NUM): By assumption, we have $\Gamma \vdash \overline{n}$: nat and $\Gamma \vdash \overline{n}$: τ' , i.e. $\tau = \text{nat}$. By inversion on the latter judgment, we have that $\tau' = \text{nat} = \tau$.

Cases (TRUE) and (FALSE): Similar to the (NUM) case.

Case $e = e_1 + e_2$ (PLUS): By assumption, we have $\Gamma \vdash e_1 + e_2$: nat and $\Gamma \vdash e_1 + e_2$: τ' , i.e. $\tau = \text{nat}$. By inversion on the latter judgment, we have that $\tau' = \text{nat} = \tau$.

Cases (TIMES) and (LEQ): Similar to the (PLUS) case.

Case $e = if(e_1, e_2, e_3)$ (IF): By assumption, we have $\Gamma \vdash if(e_1, e_2, e_3) : \tau, \Gamma \vdash e_2 : \tau$, and $\Gamma \vdash if(e_1, e_2, e_3) : \tau'$. By inversion on the last typing judgment, we have $\Gamma \vdash e_2 : \tau'$. Hence, by I.H. on $\Gamma \vdash e_2 : \tau$, we have $\tau = \tau'$.

2 Days of the Week

Task 3 Define the next(d) is d' judgement which takes a day d and returns the next day, d'. You should assume that the next day from Sunday is Friday.

Solution:

$$\frac{1}{\text{next}(\text{Fri}) \text{ is Sat}} (\text{FRI}) \qquad \frac{1}{\text{next}(\text{Sat}) \text{ is Sun}} (\text{SAT}) \qquad \frac{1}{\text{next}(\text{Sun}) \text{ is Fri}} (\text{SUN})$$

Task 4 Define the nextn(n,d) is d' judgement which takes a natural number n, a day d, and returns the nth day after d. You should make use of the inductive definition of nat.

Solution:

$$\frac{1}{\operatorname{nextn}(\mathsf{Z},d) \text{ is } d} (\operatorname{NEXTZ}) \qquad \frac{\operatorname{nextn}(n,d) \text{ is } d' \quad \operatorname{next}(d') \text{ is } d''}{\operatorname{nextn}(\mathsf{S}(n),d) \text{ is } d''} (\operatorname{NEXTSUCC})$$

Task 5 Using your answer to Task 4, extend the static and dynamic semantics of e with the cases for \overline{d} and $\overline{\texttt{nextn}}(e_1, e_2)$. Your definition should satisfy progress and type preservation, which you will need to prove below.

Solution:

• Statics

$$\frac{}{\Gamma \vdash \overline{d} : \mathtt{day}} (\mathrm{DAY}) \qquad \frac{\Gamma \vdash e_1 : \mathtt{nat} \quad \Gamma \vdash e_2 : \mathtt{day}}{\Gamma \vdash \overline{\mathtt{nextn}}(e_1, e_2) : \mathtt{day}} (\mathrm{NEXTN})$$

• Dynamics

$$\frac{1}{\overline{d} \text{ val}}$$
 (Day-V)

$$\frac{e_1 \mapsto e_1'}{\overline{\texttt{nextn}}(e_1, e_2) \mapsto \overline{\texttt{nextn}}(e_1', e_2)} \quad (\text{NEXTN-S1}) \qquad \frac{e_1 \text{ val } e_2 \mapsto e_2'}{\overline{\texttt{nextn}}(e_1, e_2) \mapsto \overline{\texttt{nextn}}(e_1, e_2')} \quad (\text{NEXTN-S2})$$
$$\frac{\underline{\texttt{nextn}}(n, d) \text{ is } d'}{\overline{\texttt{nextn}}(\overline{n}, \overline{d}) \mapsto \overline{d'}} \quad (\text{NEXTN-I})$$

3 Type Safety

We will now show type safety for the language, **including your extension in Task 5**, by proving progress and type preservation.

Task 6 Carefully state a canonical forms lemma for your extended semantics. You do not have to prove the lemma, and you may assume it for the rest of your proof.

Solution: Lemma 1 (Canonical Forms) If e val $and \vdash e : \tau$, then

- if $\tau = \operatorname{nat}$ then $e = \overline{n}$ for some natural number n,
- *if* $\tau =$ bool *then* $e = \overline{\text{tt}}$ *or* $e = \overline{\text{ff}}$ *,*
- if $\tau = \operatorname{day} then \ e = \overline{d}$ for some day d.

Task 7 Prove progress for your extended semantics, i.e.

(Progress) If $\vdash e : \tau$, then either e val or there exists e' such that $e \mapsto e'$.

Solution: We proceed by induction on the typing judgment $\vdash e : \tau$. (I write the form of $\vdash e : \tau$ followed by the rulename for each relevant case).

Case (HYP): This case is vacuous since we are considering closed terms.

Case $\vdash \overline{n}$: nat (NUM): We have \overline{n} val by (NUM-V) so we are done.

Cases (TRUE), (FALSE), (DAY): Similar to (NUM).

Case $\vdash e_1 + e_2$: nat (PLUS): The premises of the rule are: $\vdash e_1$: nat and $\vdash e_2$: nat. By I.H. on the first premise, we have that either e_1 val or $e_1 \mapsto e'_1$. In the first case, we may further apply the I.H. on the second premise to get that either e_2 val or $e_2 \mapsto e'_2$.

Subcase e_1 val, e_2 val: Since $\vdash e_1$: nat and $\vdash e_2$: nat, by canonical forms, we have that $e_1 = \overline{n_1}, e_2 = \overline{n_2}$ for some n_1, n_2 . Thus, $\overline{n_1} + \overline{n_2} \mapsto \overline{n_1 + n_2}$ by (PLUS-I).

Subcase e_1 val, $e_2 \mapsto e'_2$: Then we have $e_1 + e_2 \mapsto e_1 + e'_2$ by (PLUS-S2).

Subcase $e_1 \mapsto e'_1$: Then we have $e_1 + e_2 \mapsto e'_1 + e_2$ by (PLUS-S1).

Cases (TIMES) (LEQ): Similar to $(PLUS)^1$

Case \vdash if $(e_1, e_2, e_3) : \tau$ (IF) (abbreviated): From the premise of the rule, we have $\vdash e_1 :$ bool. By I.H. on e_1 , we have that either e_1 val or $e_1 \mapsto e'_1$. In the first case, canonical forms gives us that $e_1 = \overline{tt}$ or $e_1 = \overline{ff}$, and we may respectively apply (IF-I1) or (IF-I2). In the latter case, we may apply (IF-S).

Case $\vdash \overline{\texttt{nextn}}(e_1, e_2)$: day (NEXTN)² The premises of the rule are: $\vdash e_1$: nat and $\vdash e_2$: day. By I.H. on the first premise, we have that either e_1 val or $e_1 \mapsto e'_1$. In the first case, we may further apply the I.H. on the second premise to get that either e_2 val or $e_2 \mapsto e'_2$.

Subcase e_1 val, e_2 val: Since $\vdash e_1$: nat and $\vdash e_2$: day, by canonical forms, we have that $e_1 = \overline{n}, e_2 = d$ for some n, d. Moreover, we have that nextn(n, d) is d' for some d'^3 . Thus, $\overline{nextn}(\overline{n}, \overline{d}) \mapsto \overline{d'}$ by (NEXTN-I).

Subcase e_1 val, $e_2 \mapsto e'_2$: Then we have $\overline{\texttt{nextn}}(e_1, e_2) \mapsto \overline{\texttt{nextn}}(e_1, e'_2)$ by (NEXTN-S2).

Subcase $e_1 \mapsto e'_1$: Then we have $\overline{\texttt{nextn}}(e_1, e_2) \mapsto \overline{\texttt{nextn}}(e'_1, e_2)$ by (NEXTN-S1).

Task 8 Prove preservation for your extended semantics, i.e.

(Preservation) If $\vdash e : \tau$ and $e \mapsto e'$, then $\vdash e' : \tau$.

Solution: We proceed by induction on the dynamics $e \mapsto e'$.

¹In the (LEQ) case, you will have an additional case split on whether (LEQ-I1) or (LEQ-I2) applies.

 $^{^{2}}$ This case is actually similar to (PLUS), but it is good practice to show it again to check that nothing was missed in Task 5.

 $^{^{3}}$ Technically, this needs to be shown by induction on the judgments defined in Tasks 3 and 4.

Case $e_1 + e_2 \mapsto e'_1 + e_2$ (PLUS-S1): The premise of the rule is $e_1 \mapsto e'_1$. By inversion on the typing judgement, we have that $\vdash e_1 : \text{nat}$, i.e. $\tau = \text{nat}$. Therefore, by I.H., we have that $\vdash e'_1 : \text{nat}$, and therefore $\vdash e'_1 + e_2 : \text{nat}$ by (PLUS).

Cases (PLUS-S2), (TIMES-S1), (TIMES-S2), (LEQ-S1), (LEQ-S2), (IF-S), (NEXTN-S1) and (NEXTN-S2): All of these are congruence cases similar to (PLUS-S1)⁴.

Case $\overline{m} + \overline{n} \mapsto \overline{m+n}$ (PLUS-I): By inversion, on the typing judgment, we have that $\tau = \text{nat.}$ By (NUM), $\vdash \overline{m+n} : \text{nat.}$

Cases (TIMES-I), (LEQ-I1), (LEQ-I2), (NEXTN-I): These are reduction cases similar to (PLUS-I).

Case $if(\overline{tt}, e_2, e_3) \mapsto e_2$ (IF-I1): By inversion on the typing judgment, we have that $\vdash e_2 : \tau$ and we are done. The remaining case for (IF-I2) is similar.

 $^{^{4}}$ I have collapsed all the congruence cases here, but you should be a bit more careful in your proofs. Again, it might be useful to check the cases for (NEXTN-S1) and (NEXTN-S2) explicitly to make sure they are correctly defined.