
Low-Bandwidth VM Migration via Opportunistic Replay

Ajay Surie
Carnegie Mellon University

H. Andrés Lagar-Cavilla
University of Toronto

Eyal de Lara
University of Toronto

M. Satyanarayanan
Carnegie Mellon University

ABSTRACT
Virtual machine (VM) migration has been proposed as a building
block for mobile computing. An important challenge for VM mi-
gration is to optimize the transfer of large amounts of disk and
memory state. We propose a solution based on the opportunis-
tic replay of user interactions with applications at the GUI level.
Whereas this approach results in very small replay logs that econ-
omize network utilization, replay of user interactions on a VM at
the migration target site can result in divergent VM state. Crypto-
graphic hashing techniques are used to identify and transmit only
the differences. We discuss the implementation challenges of this
approach, and present encouraging results from an early prototype
that show savings of up to 80.5% of bytes transferred.

Keywords
Virtual Machines, VM migration, VM Replay, Internet Suspend/
Resume R©

1. INTRODUCTION
The use of virtual machine (VM) technology in mobile computing
has attracted significant attention in the last few years [3, 4, 6, 7].
Whereas there are differences in the specifics of their implementa-
tions, in all these projects the user’s computational environment is
migrated between hosts by suspending the VM on the source host,
transferring its state, and resuming it on the destination. VM mi-
gration simplifies many aspects of moving computation from one
site to another by encapsulating an entire execution state with no
need for kernel, library or language support at the migration target.
However, this simplification comes at a price: a VM is typically
large, often tens of GB in size. At the low bandwidths that are
common in mobile computing, the transfer time for such a large
amount of VM state is excessive.

In this paper we introduce opportunistic replay, a technique that
optimizes the migration of VMs between frequently visited hosts.
Opportunistic replay builds on the key observation that replay does
not have to be perfect to be useful. A complete log of user inter-
actions with a VM, such as keystrokes and mouse movements, is

first captured. The log is then shipped to a remote site, and re-
played there on an identically-configured VM in the same initial
state. Under ideal conditions, one would intuitively expect these
steps to produce identical final VM state at the remote site. How-
ever, as explained in Section 2, conditions are rarely ideal. Con-
sequently, some replays may produce final VM state that is close,
but not identical, to the desired final state. We use cryptographic
hashes to detect overlapping VM state at source and destination,
and only ship the missing pieces. If the log is relatively small and
if replay is close to ideal, this approach realizes significant reduc-
tions in total network transmission. However, there is never any
loss of correctness even in the worst case when replay produces no
overlapping state. The only negative impact in that case is perfor-
mance degradation due to the overhead of log capture, shipping and
replay.

In this work we present a study on the feasibility of opportunistic
replay. We explore the challenges and implementation issues that
a complete replay system will face. We present an experimental
prototype that addresses an initial subset of the challenges identi-
fied. We study its performance when migrating a VM over differ-
ent domestic-class bandwidths and after performing four different
types of representative end-user workloads. Our prototype is able
to realize savings of up to 80.5% in terms of bytes transferred.

2. CHALLENGES OF VM REPLAY
Many factors complicate the conceptual simplicity of opportunistic
replay. These can be grouped into three broad categories that we
discuss below: (i) incomplete log capture; (ii) non-deterministic
externalities; and (iii) exactly-once size effects.

Incomplete log capture:. An obvious prerequisite for ideal
replay is complete capture of all external stimuli that could perturb
VM state. This includes external interrupts and data transfers from
storage devices and networks, as well as user input via keyboard,
mouse and other human interaction devices. A potential concern is
the size of the log necessary for complete capture. In their work
on VM logging and replay for intrusion analysis [5], Dunlap et al.
report log growth ranging from 0.04GB per day to 1.2GB per day.
Further, VMware report for their ReTrace tool a compressed log
size of roughly 776 KB, without accounting for network activity,
when rebooting a Windows XP VM [16]. Both sources report only
modest CPU overhead for complete logging. However, logs grow-
ing at these rates would be impractical for VM relocation, since
they can easily surpass the size of the actual state changes that
would be shipped with standard VM migration techniques. An ad-
ditional concern pertains to inserting logging code in closed-source

VMMs such as VMware Workstation, and closed-source guest op-
erating systems such as Windows XP. Without access to the source
code of these components, it may be impossible to ensure com-
plete log capture. Just capturing user interaction is simpler, since
the windowing system provides a natural interface for interposition
of logging code. This will produce short logs that, even though in-
complete, can still be leveraged by opportunistic replay to realize
significant reductions in VM state transmission.

Non-deterministic externalities:. Deterministic code execu-
tion is another obvious requirement for replay to produce VM state
identical to the original execution. A major source of non-determinism
in interactive systems is network access to Web sites with dynam-
ically generated content. Consider, for example, Web access to a
site that offers current stock quotes. Replaying the Web access may
result in different content being returned because stock prices have
changed. Even when the intrinsic content of a Web page is un-
changed, there may be parasitic content such as advertising that is
different on replay. While there is no “solution” per se to the prob-
lem of non-deterministic externalities, opportunistic replay is able
to cope because replay does not have to be perfect to be useful.
Only when there is an excessive amount of non-determinism will
the overlap between local and remote VM state drop below a useful
level.

Exactly-once side effects:. A difficult problem for VM re-
play is the occurrence of events that should not be replayed for
reasons of correctness. Consider, for example, an interactive ses-
sion in which a user sends an email message. Replaying this action
would result in duplicate message transmission, which clearly vio-
lates correctness. A safe solution is to block any outbound network
traffic during replay; this will result in divergent and less benefi-
cial replay, but will guarantee consistency with the outside world.
A solution with better replay performance would detect logged ac-
tions that have such exactly-once side effects and skip them during
replay. Although this is a very difficult problem in its most gen-
eral form, it may be relatively simple to perform conservative de-
tection of common cases. For example, if there are a set of known
Web sites at which a particular user performs financial transactions,
the log can be examined for operations that reference these Web
sites. An even more conservative approach is to suppress replay of
all secure Web operations, on the grounds that high-value transac-
tions are almost certain to occur only within the scope of a secure
Web session. Finally, one could analyze network traffic and permit
“read-only” transactions on well-known protocols, such as POP3’s
STAT, LIST and RETR, but not DELE.

3. PROTOTYPE IMPLEMENTATION
We have implemented a prototype to explore the feasibility of op-
portunistic replay. Our prototype uses Xen [2] version 3.1. In order
to efficiently detect modified disk blocks, we rely on a custom block
device driver that exports a virtual disk to a VM. The block device
is coupled with a user space daemon that chunks the data written to
it and keeps track of dirty disk chunks. To efficiently synchronize
VM memory images, we use the rsync utility [15]. For record
and replay operations, we leverage Xnee [11], an off-the-shelf tool
for the X11 environment. Xnee synchronizes replay against the
X11 windowing events registered during record (e.g. change of
focus, window pop-up, etc). Finally, our prototype does not yet ad-
dress the problem of replaying interactions with exactly-once side
effects.

We refer to the source as the host at which a user is currently inter-
acting with a VM, and destination as the host to which the VM will
eventually be migrated. We assume that both source and destina-
tion hosts have initially identical copies of a suspended VM, which
is the typical setup in VM migration-based mobile computing pro-
totypes like the Internet Suspend/Resume system R© (ISR) [6, 12].
Our implementation involves 3 steps:

• Capture: All keyboard and mouse input to the locally run-
ning VM is recorded to a log. During recording, our virtual
block device tags dirty disk state, and keeps track of the order
in which disk chunks are modified. This will make synchro-
nization more efficient in later stages.

• Replay: The recorded interaction log is transferred to and
replayed on the VM at the destination. Replay speed may be
faster than capture speed. This suppresses think time during
replay and takes advantage of any free compute resources
at the destination. Modified disk chunks at the source are
shipped to the destination in the background while replay
is in progress. This ensures that network bandwidth is not
wasted by being idle during replay. In environments where
network bandwidth may be scarce or costly, in monetary or
power consumption terms, we can disable this optimization.
Since replay may be imperfect, state produced later in the re-
play may diverge more than state produced at the beginning.
To optimize for this tendency, dirty disk chunks are shipped
to the destination in reverse of the order that they were mod-
ified at the source. New VM disk state generated by replay
at the destination is also tagged for synchronization.

• Synchronization: After replay, any residual state at the source
must be transferred to the destination so that the resulting
state at both hosts is identical. Under ideal conditions, the
amount of overlapping state generated at the source and des-
tination is large, so there is little residual state to be trans-
ferred. Differences between the state at the source and desti-
nation are detected via cryptographic hashing using the SHA-
1 algorithm, and propagated to the destination.

4. RESULTS
We conducted experiments using different workloads at various
emulated bandwidths. We ran each workload at the source host
on a VM in the same initial state and saved the resulting VM state
and interaction log. We then performed opportunistic replay of the
saved log at the destination, followed by transfer of residual disk
and memory state from the source. For comparison, we also trans-
ferred all modified memory and disk state to the destination with-
out replay. We enabled background transfer of state during replay,
which biases results against our prototype for environments with
limited or costly connectivity. All results we present below are an
average of 3 runs.

Table 1 describes the workloads we used in our experiments. Gen-
eral simulates a user conducting everyday tasks such as reading
news websites (e.g, CNN.com) with Mozilla Firefox, and editing
documents with the OpenOffice.org software suite and the Gedit
text editor. Install installs applications such as the Emacs text ed-
itor and the Mozilla Thunderbird email client using Synaptic, a
graphical package managing tool available for the Ubuntu distri-
bution. Kbuild downloads the Linux kernel version 2.6.23.1 from
www.kernel.org and builds it without modules enabled. Fi-
nally, the Gimp program is used in the last workload to edit and

Workload Description Duration Log Size Dirty Disk Dirty Memory
(minutes) [Gzipped] (MB) State (MB) State (MB)

General Web browsing 15.65 0.66 [0.15] 11.57 117.43
Document editing

Install Application installation 2.85 0.11 [0.02] 57.08 105.18
Kbuild Kernel download & build 7.23 0.20 [0.04] 153.51 144.47
Gimp Image manipulation 9.73 0.81 [0.18] 6.73 48.93

Table 1: Interactive workloads

Bandwidth Upstream (Mbits/sec) Downstream (Mbits/sec)
Cable 0.375 6
DSL 0.75 3
EVDO Rev A 1.2 3.8

Table 2: Emulated bandwidths in Mbits/sec (upstream/downstream)

manipulate sample images. As shown in the right hand columns
of Table 1, the size of the captured logs is three orders of magni-
tude smaller than the total amount of dirty state generated by the
respective workload.

In our experimental configuration, the source host was configured
with an Intel Pentium 4 3.60GHz CPU, 2MB cache and 2GB of
RAM, and the destination host was configured with a 2.66GHz In-
tel Core 2 quad-core CPU, 4MB cache, and 4GB RAM. We used
Ubuntu 7.04 as the guest and host OS on both machines. The VM
was configured with 512MB of RAM and a 4GB virtual disk. Ex-
periments were conducted using emulated bandwidths, shown in
Table 2. The Cable and DSL bandwidth values were selected from
the current offerings of two large ISPs. The EVDO Revision A
standard is currently in use by wireless network providers such as
Verizon and Sprint. We note that by emulating advertised peak
bandwidths we bias against the benefits of opportunistic replay.

Replay at native speed: . Our first set of experiments demon-
strates the benefits of replay when the log is replayed at native (cap-
ture) speed. Figure 1 (a) and Figure 1(b) show the amount of mem-
ory and disk state transferred during migration with and without
replay at the destination at various bandwidths. The figure shows
that the wins are greatest for the Kbuild workload, where disk and
memory state transferred at Cable speed shrink from 153.51MB to
29.74MB, and from 144.47MB to 28.9MB, respectively. As de-
scribed in Section 3, dirty disk state is shipped in the background
while replay is in progress. A higher upstream bandwidth results in
more disk state shipped in the background and not being generated
through replay. For example, at EVDO speeds, disk state transfer
for the Install workload is reduced from 57.08MB to 44.73MB. In
contrast, at cable speeds, disk state transfer is reduced to 14.06MB.
If the amount of modified state is small or bandwidth is high, the
background disk state transfer might finish before replay is com-
plete, and replay is terminated; this holds true for the General and
Gimp workloads. Early replay termination also limits the amount
of memory state being recreated. For example, with the General
workload, 107.55MB of memory state is shipped at EVDO speeds,
which is reduced to 58.63MB at Cable speeds. Thus, even for in-
teractive workloads that generate little dirty disk state, significant
memory state shipping savings can be realized.

Figure 2 (a) and (b) show the reduction in migration time using re-

play at native speed for both disk and memory state. Replay signif-
icantly reduces disk state transfer times, which is most apparent at
the lowest bandwidths. At Cable speed, transfer time for disk state
reduces from 1373 seconds to 342 seconds for the Install workload,
and from 3615.6 seconds to 767 seconds, for Kbuild. This trend is
also true of memory state transfer, with the Install workload ob-
taining the largest reduction, at Cable speed. For Install, transfer
times are reduced from 2459.8 seconds to 400 seconds. For the
General & Gimp workloads, transfer times at Cable speed go down
from 2744.5 to 1365.5 seconds, and from 1137.2 to 894.5 seconds,
respectively.

Replay at speeds higher than native:. The goal of higher
speed replay is to suppress idle or think time during replay, in order
to generate more VM state in less time at the destination. Figures 3
(a) and (b) show the benefits of higher speed replay for General
and Gimp, our most interactive workloads. In the figures, 2X re-
play indicates that think time between interactions was compressed
by half during replay. We show results only for EVDO speeds;
by compressing think time, more of the log is replayed before the
background transfer of disk state finishes. This reduces the amount
of memory state transferred. The results at other bandwidths do
not show improvements as the entire log is replayed even at native
speed. Kbuild and Install also show little improvement, since they
are CPU intensive workloads that expose almost no compressible
think times. Finally, the amount of dirty disk state for Gimp and
General is small and not significantly affected by faster replay.

The General workload benefits from faster replay, with memory
state transfer decreasing from 117.43MB with no replay to 59.64MB
when the session is replayed at four times the native speed. The
same trends translate to Figure 3 (b), with transfer time decreasing
from 576.17 seconds to 299.17 seconds. The Gimp workload does
not significantly benefit from faster replay as it does not generate
much dirty memory state.

5. RELATED WORK
Closest in spirit to opportunistic replay is the work of Lee et al. on
operation shipping for mobile file systems [8]. That work showed
how logging and replay could significantly improve performance in
propagating large files from a weakly-connected client to a server.
Our work differs in two major ways. First, our focus is on re-
creating VM state rather than file system state. Second, we use an

0

20

40

60

80

100

120

140

160

180

General Install Kbuild Gimp
(a) Disk State

D
is

k
St

at
e

Tr
an

sf
er

re
d

(M
B

)

No Replay
Cable 1X
DSL 1X
EVDO 1X

All standard deviations are less
than 1.4% of means

0

20

40

60

80

100

120

140

160

General Install Kbuild Gimp
(b) Memory State

M
em

or
y

St
at

e
Tr

an
sf

er
re

d
(M

B
)

No Replay
Cable 1X
DSL 1X
EVDO 1X

All standard deviations are less
than 1.8% of means

Figure 1: Bytes transferred during replay at native speed

0

500

1000

1500

2000

2500

General Install Kbuild Gimp
(a) Disk State

D
is

k
St

at
e

Tr
an

sf
er

 T
im

e
(s

ec
on

ds
)

No Replay
Cable 1X
DSL 1X
EVDO 1X

3615.6All standard deviations are less
than 10% of means

0

500

1000

1500

2000

2500

3000

General Install Kbuild Gimp
(b) Memory State

M
em

or
y

St
at

e
Tr

an
sf

er
 T

im
e

(s
ec

on
ds

) No Replay
Cable 1X
DSL 1X
EVDO 1X

3392.5All standard deviations are less
than 4% of means

Figure 2: Total state transfer time at native speed. (“Replay” bars superimposed on top of “No Replay” bars)

0

20

40

60

80

100

120

140

General Gimp

(a) Bytes transferred at EVDO bandwidth

M
em

or
y

St
at

e
Tr

an
sf

er
re

d
(M

B
)

No Replay
1X Replay
2X Replay
4X Replay

All standard deviations are less
than 0.7% of means

0

100

200

300

400

500

600

700

General Gimp

(b) State Transfer Time at EVDO bandwidth

M
em

or
y

St
at

e
Tr

an
sf

er
 T

im
e

(s
ec

on
ds

) No Replay
1X Replay
2X Replay
4X Replay

All standard deviations are less
than 4% of means

Figure 3: Bytes transferred and transfer time for memory state using higher speed replay

opportunistic approach and can therefore benefit even from replays
that diverge from the original execution.

Our use of an opportunistic approach to exploiting data similar-
ity was inspired by the work of Tolia et al. in distributed file
systems [13] and relational databases [14]. A recurring theme in
that work is the description of a large data object in recipe form
using cryptographic hashes, and the synthesis of parts of that ob-
ject from local data sources in order to reduce transmissions over a
bandwidth-challenged network. More recently, Annapureddy et al.
have used similar techniques in the context of cooperative caching
for file servers [1]. Our work extends the opportunism underlying
these approaches to the realm of VMs, using techniques specific to
log capture and replay. At an even deeper level, the idea of using
cryptographic hashing for detecting similarity of data content has
been used in file systems such as LBFS [10], and the rsync file
transfer protocol [15].

As mentioned in Section 2, the concept of VM logging and replay
was introduced by Dunlap et al. [5] in the context of the ReVirt
system for intrusion analysis. Since their work was dependent on
complete log capture and ideal replay, it required complex source
code modifications to the VMM, and generated very large logs. In
contrast, opportunistic replay can afford to be less strict. As we
have shown in this paper, a profitable level of fidelity of log capture
and replay can be implemented without VMM modifications.

6. CONCLUSION AND FUTURE WORK
We have presented opportunistic replay, a technique that replays
user actions on a target site to recreate VM state and minimize the
overhead of VM migration. By acknowledging that replay for VM
migration does not need to be perfect to be useful, we are able to at-
tack the problem at the GUI level, greatly reducing complexity and
producing brief logs, while still yielding byte transfer reductions of
up to 80.5%.

While our current prototype presents encouraging evidence, a num-
ber of implementation aspects remain unexplored. First, tracking
VM memory state as it is dirtied will further optimize our network
transfer savings. In addition, since we tolerate imperfect replay, the
likelihood that final VM state diverges from state produced by re-
play increases with the length of the interaction log. To tackle this
problem, we plan to explore incremental replay, in which a single
user work session is divided into a number of segments of shorter
duration. Each segment has its own interaction log and VM state
at the destination is synchronized with that at the source when re-
play for a segment is complete. As a result, state at the destination
only lags slightly behind that at the source. This bears resemblance
to the concept of trickle reintegration in the Coda file system [9].
Finally, policies to prevent replay from altering outside-world state
(such as email inboxes or bank accounts) need to be developed.
Based on the promising results reported here, we also plan to inte-
grate opportunistic replay into ISR.

Acknowledgements
We thank Niraj Tolia for his involvement in the initial stages of
this work. We also thank Mike Kozuch and the anonymous review-
ers for their encouraging comments and suggestions. This research
was supported by the National Science Foundation (NSF) under
grant number CNS-0509004, and the National Science and Engi-
neering Research Council (NSERC) of Canada under grant num-
ber 261545-3 and a Canada Graduate Scholarship. Any opinions,
findings, conclusions or recommendations expressed in this mate-

rial are those of the authors and do not necessarily reflect the views
of the NSF, NSERC, Carnegie Mellon University, or the Univer-
sity of Toronto. Internet Suspend/Resume is a registered trademark
of Carnegie Mellon University. All unidentified trademarks men-
tioned in the paper are properties of their respective owners.

7. REFERENCES
[1] S. Annapureddy, M. J. Freedman, and D. MaziÃĺres. Shark:

Scaling file servers via cooperative caching. In Proc. 2nd

Symposium on Networked Systems Design and
Implementation, Boston, MA, May 2005.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. In Proc. 19th Symposium on Operating
Systems Principles (SOSP), Oct. 2003.

[3] Caceres, R., Carter, C., Narayanaswami, C., Raghunath, M.
Reincarnating PCs with Portable SoulPads. In Proc. 3rd

International Conference on Mobile Systems, Applications
and Services (MobiSys), Seattle, WA, June 2005.

[4] L. Cox and P. Chen. Pocket hypervisors: Opportunities and
challenges. In Proc. HotMobile 2007: the 8th Workshop on
Mobile Computing Systems and Applications, Tucson, AZ,
February 2007.

[5] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay. In Proc. 5th
Symposium on Operating Systems Design and
Implementation, Dic 2002.

[6] M. Kozuch and M. Satyanarayanan. Internet
Suspend/Resume. In Proc. 4th IEEE Workshop on Mobile
Computing Systems and Applications, Callicoon, NY, June
2002.

[7] H. A. Lagar-Cavilla, N. Tolia, E. de Lara,
M. Satyanarayanan, and D. O’Hallaron. Interactive
Resource-Intensive Applications Made Easy. In Proc.
Middleware 2007: ACM/IFIP/USENIX 8th International
Middleware Conference, Newport Beach, CA, November
2007.

[8] Y.-W. Lee, K.-S. Leung, and M. Satyanarayanan. Operation
Shipping for Mobile File Systems. IEEE Transactions on
Computers, 51(12), 2002.

[9] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan.
Exploiting weak connectivity for mobile file access. In Proc.
of the 15th Symposium on Operating Systems Principles
(SOSP), pages 143–155, New York, NY, USA, 1995. ACM
Press.

[10] A. Muthitacharoen, B. Chen, and D. Mazieres. A
Low-Bandwidth Network File System. In Proc. 18th
Symposium on Operating Systems Principles (SOSP),
Chateau Lake Louise, Banff, Canada, Oct. 2001.

[11] H. Sandklef, J.-E. Dahl, and L. Santander. GNU Xnee.
http://http://www.sandklef.com/xnee/.

[12] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, A. Surie,
D. R. O’Hallaron, A. Wolbach, J. Harkes, A. Perrig, D. J.
Farber, M. A. Kozuch, C. J. Helfrich, P. Nath, and H. A.
Lagar-Cavilla. Pervasive Personal Computing in an Internet
Suspend/Resume System. IEEE Internet Computing, 11(2),
2007.

[13] Tolia, N., Kozuch, M., Satyanarayanan, M., Karp, B.,
Bressoud, T., Perrig, A. Opportunistic Use of
Content-Addressable Storage for Distributed File Systems.
In Proc. 2003 USENIX Technical Conference, San Antonio,

TX, June 2003.
[14] Tolia, N., Satyanarayanan, M., Wolbach, A. Improving

Mobile Database Access over Wide-area Networks without
Degrading Consistency. In Proc. 5th International
Conference on Mobile Systems, Applications and Services
(MobiSys), 2007.

[15] A. Tridgell and P. Mackerras. The rsync algorithm. Technical
Report TR-CS-96-05, Department of Computer Science, The
Australian National University, Canberra, Australia, 1996.

[16] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and
B. Weissman. Retrace: Collecting execution trace with
virtual machine deterministic replay. In Proc. 3rd Annual
Workshop on Modeling, Benchmarking and Simulation,
MoBS, San Diego, CA, June 2007.

