1410

1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

Operation Shipping for Mobile File Systems

Yui-Wah Lee, Member, IEEE, Kwong-Sak Leung, Senior Member, IEEE, and
Mahadev Satyanarayanan, Fellow, IEEE

Abstract—This paper addresses a bottleneck problem in mobile file systems: the propagation of updated large files from a weakly-
connected client to its servers. It proposes an efficient mechanism called operation shipping or operation-based update propagation. In
the new mechanism, the client ships the user operation that updated the large files, rather than the files themselves, across the weak
network. (In contrast, existing file systems use value shipping and ship the files.) The user operation is sent to a surrogate client that is
strongly connected to the servers. The surrogate replays the user operation, regenerates the files, checks whether they are identical to
the originals, and, if so, sends the files to the servers on behalf of the client. Care has been taken such that the new mechanism does
not compromise correctness or server scalability. For example, we show how forward error correction (FEC) can restore minor
reexecution discrepancies and, thus, make operation shipping work with more applications. Operation shipping can be further
classified into two types: application-transparent and application-aware. Their feasibilities and benefits have been demonstrated by the
design, implementation, and evaluation of a prototype extension to the Coda File System. In our controlled experiments, operation
shipping achieved substantial performance improvements—network traffic reductions from 12 times to nearly 400 times and speedups
in the range of 1.4 times to nearly 50 times.

Index Terms—Operation shipping, operation-based update propagation, mobile file systems, surrogate client, application-awareness,
application-transparency, forward error correction, Coda File System.

<+

INTRODUCTION

NO. 12, DECEMBER 2002

MOBILE computers, unlike their stationary counterparts,
are often at the mercy of weak connectivities—net-
works that are intermittent, low-bandwidth, expensive, or
high-latency [31], [13]. A mobile file system is a distributed
file system that works well even with these unpleasant
networks. Previous research has demonstrated the feasi-
bility and benefits of disconnected operation, in which a
file-system client can continue to function even when it
loses network connectivity to its server [12]. They have also
demonstrated that weak connectivity can be exploited. A
key technique for the latter is to decouple the slow update
propagation from the foreground processing of file-system
requests [25].

Unfortunately, even though update propagation is now a
background activity, it is still a performance bottleneck in a
weak network. Because it is traditionally done by shipping
updated files in their entirety, and it can cause substantial
network traffic, Large files are common and they can easily
overwhelm a weak network. For example, it will take at
least 13 minutes to ship a 1-Mbyte file in its entirety across a
9.6-Kbps wireless modem link. When the file is shared by
more than one user, this imposes an unpleasant latency
during which the latest version is not available to other
users. Also, during that period, the client is expected to
maintain its network connectivity, which may be impossible

o Y.-W. Lee is with Bell Laboratories, Holmdel, NJ 07733.
E-mail: leecy@bell-labs.com.

o K.-S. Leung is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
E-mail: ksleung@cse.cuhk.edu.hk.

o M. Satyanarayanan is with the Department of Computer Science, Carnegie
Mellon University, Pittsburgh PA 15213. E-mail: satya+@cs.cmu.edu.

Manuscript received 20 Mar. 2001; revised 7 Dec. 2001; accepted 25 Mar.
2002.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 113823.

(the client may have wandered into a radio blind spot) or
undesirable (high energy consumption or high connection
charge). Obviously, there is a need to reduce the network
traffic and latency. In the literature, delta shipping and data
compression are often suggested as the solutions to the
problem. As discussed later in this paper, they both have
shortcomings that limit their usefulness.

In this paper, on the other hand, we propose a radically
different technique: operation shipping (also called operation-
based update propagation). We are motivated by two observa-
tions. First, although many files are large, the user operations
that created or modified them are usually small and easy to
intercept. Second, these user operations can often be
reexecuted to regenerate the files at modest computation
costs. We therefore propose that a weakly-connected client
should, when appropriate, ship the user operation rather
than the files it updated. Fig. 1 depicts the idea.

While operation shipping is conceptually simple, we
emphasize that it is not as simple as rsh file-server
latex (i.e., manually rerunning the command latex on a
remote file-server using a remote shell rsh). Specifi-
cally, we need to address a number of issues before we can
apply it in the context of mobile file systems. First, how can
user operations be logged? And will this logging mechanism
be backward-compatible with existing applications? Also,
how can these operations be shipped in lieu of the files that
they updated? Section 3 will discuss these issues in detail.

Second, we need to consider the location for reexecution
to happen. We propose a new per—client entity in the
system: surrogate. As discussed in Section 3.6, a surrogate is
a special client that is strongly connected to the server, and
is assigned as a helper of a weakly connected client. By
using surrogates, we can avoid adding extra workload to
the servers, and we can more easily ensure that their
execution environments closely match those of the clients.

0018-9340/02/$17.00 © 2002 IEEE

LEE ET AL.: OPERATION SHIPPING FOR MOBILE FILE SYSTEMS

1411

2. Replaying 0"~
0. Logging of user operations 3 VaIidgtion: V=V ?
]
. 1. Requesting operation O
client surrogate
—_—

5. Finalization

4. Reint- !
egration :

server

weak network

strong network

Fig. 1. Overview of operation shipping. This figure presents a high-
level view of operation shipping. The zeroth step is for the logging of
user operations. The first through the fifth step are for the shipping of
updates by operation. The concept of the surrogate will be explained in
Section 3.6.

Third, we have to make sure the correctness of the new
mechanism. For example, the version of a file on the client is
the authoritative copy while the version regenerated by the
surrogate is not. Our file system must guarantee that only
the authoritative version is eventually written back to the
file server. Section 4 will explain our strategy. It will also
present some interesting results that surprised us—we
found that many common applications regenerate files that
are not identical to the authoritative copies. We refer to
these as nonrepeating side effects or reexecution discre-
pancies. Yet, even in these situations, our file system will
still perform correct update propagation. We describe two
techniques, one based on forward error correction (FEC),
and the other by intelligently renaming temporary files, to
accomplish this. (Sections 4.3, 4.4, and 4.5).

To validate our approach, we have designed, implemen-
ted, and evaluated a prototype system. The main compo-
nent of the system is an extended version of the Coda File
System [33], [12], [24], [7]. We also made minor extensions
to a popular UNIX shell called the Bourne Again Shell
(bash) and an image application called the GIMP. They
serve as case studies showing how operation shipping will
interact with existing noninteractive and interactive appli-
cations. The source code of the prototype system can be
downloaded from [16]. We evaluated the system using
controlled experiments, and found that operation shipping
can achieve substantial performance improvements. In our
experiments, the network traffic reductions were in the
range of 12 times to nearly 400 times, and the speedups
were in the range of 1.4 times to nearly 50 times.

As we will discuss in Section 3, there are two types of
operation shipping: application-transparent and applica-
tion-aware. An early version of this paper [18] has
presented some results for the first type. In this paper, we
will present a complete picture, discuss both types of
operation shipping, and report the experimental results of
application-aware operation shipping.

2 CobA BACKGROUND

The Coda File System has been used as a research vehicle
for a number of advanced file-system techniques, such as

Low-level file-system operations CML record logged
chown CHOWN

chmod CHMOD

utimes UTIMES

open STORE (see note below)
write STORE (see note below)
close STORE (see note below)
mkdir MKDIR

rename RENAME

Fig. 2. Examples of low-level operations and their corresponding CML
records. A STORE record will be used to log a sequence of several
operations: a mutating open, possibly interspersed with some write
operations, and a close, all on the same file.

disconnected operation, replicated file servers using opti-
mistic concurrency control, etc. It is still being actively
developed and maintained by both the Carnegie Mellon
University and a team of volunteer programmers around
the Internet [7]. It has been well-documented in the
literature [33], [12], [14], [25], [21], [3], [32], [30], so here
we only provide a very brief background.

Coda uses a client—server model. In each Coda installa-
tion, there are many clients and a few servers." On each
client, a cache manager, called Venus, carefully manages
and persistently stores cached objects (files, symbolic links,
and directories). To support mobile computing, Coda
clients can be used in disconnected and write-disconnected
modes. In these two modes, Venus temporarily operates
independently, and allows file-system operations to be
performed on objects even where there is no, or merely
some very weak, connectivities to the servers. In these cases,
updates are applied immediately to locally cached objects,
and are also logged in a client-modify log (CML). The
logging mechanism allows updates to be eventually
propagated to the servers that maintain the primary replica
of the objects [11], [24]. This eventual propagation is called
reintegration.

A CML consists of records called CML entries, each is
recording the effect of a mutating file-system operation. For
example, a chmod operation is logged as a CHMOD record,
and a mkdir operation is logged as a MKDIR record. Fig. 2
lists some CML record types.

The record type STORE is special. First, it is recording the
effect of a sequence of operations: a mutating open,
interspersed possibly with several write’s, and a final
close operation on a file. Coda maps the whole sequence
of operations to a single STORE record because it uses a
session semantics [11]. Second, a STORE’s associated data
includes the content of the file being stored. In contrast,
other record types do not include the content but only some
directory attributes such as the owner or the name of an
object. Note that file contents can be as large as many
kilobytes or megabytes. Therefore, Venus does not log the
content of a stored file in CML; rather, it only keeps a
pointer to a container file, which is a regular Unix file
serving a double role as both the cache copy of the file and
the logged value of the store operation.

1. Coda supports the use of replicated servers [33], [14]. When an object
is multiply replicated, a client needs to talk to multiple servers for
processing the object. In the following, we use the plural form of the noun
“servers,” which actually covers also the case of a singly replicated server.

1412

Traditionally, Coda uses a value-based approach for
propagating STORE records. Container files, which repre-
sent the logged values of store operations, are shipped
across the weak network [11]. This is exactly the perfor-
mance bottleneck that can be optimized out by operation
shipping. In the next section, we will see how Venus can
perform update propagation without shipping the bulky
container files.

Like in any distributed file systems, there are cases when
two clients simultaneously read or write on the same file.
Designed for high availability in environments where
network disconnections are involuntary and unpredictable,
Coda uses an optimistic approach for replica control. It
allows read and write operations on all clients, and certifies
these operations as conflict-free upon reintegration. When
conflicts happen, Coda provides manual and automatic
tools to resolve the conflicts.

3 LOGGING AND SHIPPING OF USER OPERATIONS

3.1 User Operations versus Values

High-level user operations, the focus of this paper, should not
be confused with low-level file-system operations. Examples of
the former are invocations of noninteractive applications,
such as latex or make, as well as application-specific
commands of interactive applications, such as changing
color balance of an image in a photo editor or replacing a
string in an text editor. Examples of the latter are CHOWN,
CHMOD, STORE, etc. Note that a user operation O can
generate a number of low-level operations. We denote the
latter as V = {11, V4,...,V,,}, the values of the former. For
example, a user operation latex usenix99.tex will
generate a number of CREATEs and STOREs; a user
operation ar rv libsth.a foo.o bar.o will generate a
sequence of CREATE, STORE, REMOVE, and RENAME. Also,
user operations should not be confused with key strokes
and mouse clicks. The latter are uninterpreted raw input
and have little meaning if taken out of context. In contrast,
the former are interpreted and their dependencies on
context are much smaller.

User operations are logged when they are performed by
users. The logging procedures involves the passing of three
pieces of information to the file system: 1) A user operation
O has happened, 2) O has been executed with a context C,
and 3) O has generated a set of values V. A logging entity is
responsible for passing this information to the file system.

3.2 Application-Transparent versus
Application-Aware

There are two types of user operations. The first includes
commands that invoke noninteractive applications, such as
make or latex; while the second includes commands
performed to certain interactive applications—examples are
“change color balance” in an image editor and “replace
string” in a text editor. It is important to make this
distinction because they corresponds respectively to applica-
tion-transparent and application-aware operation shipping.
The former case is relatively easy to understand, and
operation shipping can be made transparent to the
applications. The latter case is no less important than the
former, but it involves a slightly more complicated
mechanism. In particular, applications in the latter case

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 12, DECEMBER 2002

must be modified—they must have mechanisms to log user
operations on the client and to replay user operations on the
surrogate.

3.3 Logging of User Operations

In this section and the next, we will first discuss the
application-transparent case, and then extend the discus-
sion to the application-aware case.

3.3.1 Application-Transparent Logging

To log user operations transparently, our file system makes
use of the Unix concept of process groups to associate user
operations with the low-level operations that they generate.
Note that a user operation is identified with its process
group but not with individual processes since some
applications (such as make) spawn child processes to carry
out subtasks of the same user operation.

The new file system supports operation logging by
extending its file-system interface, which can be used by a
logging entity—a Unix shell in this case. The extension
comprises two new system calls: VIOC_BEGIN_OP and
VIOC_END_OP. Together, they define a logging session of
the process group. During a logging session, the effect of
every mutating file-system call from the same process group
is regarded by Venus as a part of the value generated by the
user operation. Fig. 3b shows how alogging shell would make
use of the new interface, and how this is done transparently to
the applications. For comparison, the actions of an ordinary
(i.e., nonlogging) shell is shown in Fig. 3a.

During a logging session, regardless of the network
connection quality, Venus will put itself into the write-
disconnected mode (Section 2). That means it will not
immediately write through the individual updates to the
server. Instead, it will log these updates and propagate
them altogether later, possibly using operation shipping if
the validation succeeds. Section 3.4 will explain the
propagation mechanism.

Besides instrumenting the command shell, it is also
possible to instrument the kernel so that it logs all user
operations when exec calls happen. However, we favor a
nonkernel approach because of the following reasons. First,
we believe that we should put into the kernel only those
functionalities that are absolutely necessary to be there—
operation logging is not such a functionality as it can be
implemented in user space. Second, our approach makes it
easier to implement flexible policies (such as opting out
some applications).

The logging mechanism described previously can be
applied to any Unix shell. As a case study, we apply it to the
GNU Project’s Bourne Again Shell (bash) [5]. The extension
involves only a few lines of code (the source code is
available for download from [16]). Our current implemen-
tation serves only as a proof of concept and is simplistic in
some senses—it logs and replays all user operations, and it
always uses operation shipping (unless it is forced to fall
back on value shipping). A more realistic implementation
can allow users to “opt-out” operation logging /shipping for
some applications. The file system can also dynamically
decide on the best mode of update propagation based on
the network conditions, application execution time, etc. See
[17] for some of these possible extensions.

LEE ET AL.: OPERATION SHIPPING FOR MOBILE FILE SYSTEMS 1413
Non-interactive]
Shell application File System
O (latex)
—
fork
3z | setpgid
. X C 1
waitpid 50 |
[l |
|
= exec
0 V1 (STORF)
= C
kernel g2 V2 (STORE)
S ®
Lo
£
I o
C ®©
0 .
< Vm (STORE)
unblock | 1 exit
Time
(a)
Non-interactive
Logging Shell application File System
O (latex)
—=
fork
g 1 setpgid
- gz | 9 VIOC_BEGIN_OP
waitpid 55 | latex
L 1
1
= exec
g V1 (STORE)
B < g’ 8
kernel @ .2 V2 (STORE) 5 9
L9 2 @
&
& ® .
< Vm (STORE)
unblock .
"""""""""""""""""""""" - oxil VIOC_END_OP
Time
(b)

Fig. 3. Logging of user operations. (a) The typical sequence of an ordinary (i.e., nonlogging) shell executing an application. (b) A logging shell
logs the user operation (such as latex usenix.tex) by inserting the VIOC BEGIN OP and vVIOC END OP syscalls before and after the

execution of the noninteractive application. Vi, V5, ..
CHOWN, CHMOD, and STORE.

3.3.2 Application-Aware Logging

For application-aware operation logging and shipping, a
new element—the application-specific operation log—is re-
quired. The application logs the user operations, prepares
the log, and passes the log to the file system using a new
syscall VIOC_PUT_APP_OPLOG. Fig. 4 illustrates the inter-
action between the application and the file system. The file-
system client does not interpret the log but just forwards it
to the surrogate. On the surrogate, a reexecuting instance of
the same application retrieves the log using a new syscall
VIOC_GET_APP_OPLOG.

Note that, in this case, the application must be made
aware of the new update propagation mechanism. That is,
to participate in operation shipping, an existing application
has to be modified. To demonstrate this process in an
example, we modify an existing application—GIMP, or the
GNU Image Manipulation Program, which is an open-
source program popular for tasks such as photo retouching,

., V,, are the file-system operations that the application generates. Examples of them are

image composition, and image authoring [6], [15]. Being an
interactive application, GIMP has to be modified before it
can participate in operation shipping.

Fortunately, we found that the needed modification is
moderate [17]. It does not involve major changes in the
internal logic of the application but only some minor
alternations on the user-interface modules—each GIMP
command being logged will need a few lines of code for
logging. The key insight here is that it is feasible yet not
exceedingly difficult to apply operation logging to inter-
active applications. Our prototype currently can log 30
different user commands, such as jpeg_load, normal-
ize, brightness/contrast, text, etc. The number
represents about one sixth of the total number of user
commands that exist in GIMP. In terms of the number of
lines of code, we added about 2,000 lines, while GIMP has
about 314,000 in total. In terms of time, it took us a few
weeks to understand the structure of the system and enable

1414

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 12, DECEMBER 2002

A Logging Instance
of an Interactive
Application

VIOC_BEGIN_OP

File System on
a Weakly—Connected
Client

01 (load) —=| V1 (STORE)
02 (add text) ——
V2 (STORE)
Om (save) —
A Logging Session
Vn (STORE)
An Application VIOC_PUT_APP_OPLOG
Session
VIOC_END_OP
Time I |

Fig. 4. Application-aware operation logging. This figure shows what happens when a user interacts with an interactive application (such as GIMP).
Examples of user operations are to 1oad an image, to add text to the image, and to save the image. Vi, V4, ..., V}, are file-system operations that
the application issues. Examples of these are STORE, RENAME, and MKDIR. The application also captures the user operations on an application-
specific log, and passes the log to the file system using the syscall vIOC PUT APP OPLOG.

logging for the first few commands, but enabling more
commands becomes straightforward after that.

The extended GIMP? can run in two special modes:
oplog and reexec. They are for use on a client and a
surrogate respectively. The GIMP-specific operation logs
use Script-Fu scripting facilities and the Scheme language
[15]. Fig. 5 shows an example.

3.4 Shipping of Logged Operations

3.4.1 Application-Transparent Shipping

The shipping stage has five phases and involves all three
parties in the system—the client, the surrogate, and the
servers. The five phases are:

I. requesting,

2. replaying,

3. wvalidation,

4. reintegration/aborting, and
5. finalization.

Fig. 6 depicts an overview of the shipping stage; [17] gives
more details. The mechanisms are very similar for both
application-transparent and application-aware cases. We
will first present the mechanism for the former, and then
discuss the additional mechanism needed for the latter.
Among the five phases, the key is the replaying phase, in
which Venus reexecutes a user operation by forking and
execing the application. The hope is that a reexecuted user
operation O (such as latex) will regenerate a set of values
V' ={V],Vy,..., V! } (such as {CREATE, STORE, ..., RENAME})
that is identical to the original (V = {V},V5,...,V,,}). To
associate a user operation with the effects of the file-system
calls that it emits, Venus puts itself into a replaying session.
As in a logging session, every call that comes from the same
process group of the reinvoked application will be regarded
by Venus as from the same user operation. Before execing

2. The prototype is based on the mainstream version 1.0.2. The source
code of the extended GIMP is available for download from [16].

the application, Venus will also restore the execution context,
which includes the command-line arguments, environment
variables, working directories, and file-creation mask
(umask).

Similar to the case in a logging session, Venus will put
itself into the write-disconnected mode during the replay-
ing phase. Here, the reason is that we want to make sure
that all reexecutions are abortable transactions—their effects
will be propagated to the server only if they can pass the
validation phase (Section 4). In other words, the write-
disconnected mode is being exploited here to provide
failure atomicity. If an reexecution cannot be validated, all
its effect will simply be discarded from the system, and the
client will fall back to use value shipping.

3.4.2 Application-Aware Shipping.

The shipping stage for the application-aware case is very
similar to the previous case. There are two main differences.
First, the replaying entity is the application itself but not
Venus. Second, the syscall VIOC_GET_APP_OPLOG is
needed here. It is retrieved by the application so as to
replay all the user operations and to hopefully regenerate
the same set of low-level operations.

3.5 Cancelation Optimization

Sometimes a file is updated many times before it is
reintegrated. Intuitively, the intermediate states are not
needed since they have no effects on the final states. To
exploit this intuition, Coda has a mechanism called
cancelation optimization that will cancel CML records that
have no final effects. An example of these records are the
nonfinal STORE records for a file that is updated many
times before reintegration (see Chapter 6.3 of [11] for the
formal treatment on this subject). For operation shipping,
we need to slightly modify the standard procedure so as to
preserve the needed information for validation. Specifically,
an otherwise canceled record will be kept around as a ghost
record so as to preserve the necessary information for

LEE ET AL.: OPERATION SHIPPING FOR MOBILE FILE SYSTEMS

(define (script-fu-oplog-reexec)
(let*
(; declaring local variables
(theImage_1)
(theLayerDrawable_2)
(theLayerDrawable_3)
} ; end of local variables
(set! theImage_1 (car (file-jpeg-load 1
"gibralterZ.jpg" "gibralter2.jpg")))
(set! thelLayerDrawable_ 2 (car
(gimp-image-get-active-layer thelImage_1)))
(set! theLayerDrawable_3 (car (gimp-text-ext theImage_1
thelayerDrawable_2 263.000000 571.000000
"Gibralter" 0 1 15 0
nkn nhelyveticah "M o mxn wHw mdewm wkn s)
(gimp-layer-translate theLayerDrawable 3 23 0)
(gimp-floating-sel-anchor thelLayerDrawable_ 3)
(file-jpeg-save 1 theImage 1 thelLayerDrawable_2
/coda/usr/c.clement/tmp/test2/t31.jpg" "t31l.jpg"

1415

1.000000 0.000000 1)

Fig. 5. An example GIMP-specific operation log. This figure shows a portion of an example GIMP-specific operation log. It records the following user
operations. The user loaded a jpeg file name “gibralter2.jpg”. He then added a text string “Gibralter,” moved the text layer to the lower right corner of
the image, and “anchored” (pinned) the layer. Finally, he saved the annotated image to another file called “t31.jpg.” The log was automatically
generated by the extended GIMP, but here it was slightly edited (with long lines split into shorter lines) for better presentation in the figure.

validation (Section 4.2). This modified procedure increases
the overhead slightly but preserves the effectiveness of
cancelation optimization (see Chapter 4.4 of [17]).

3.6 Surrogate

The key roles of a surroga’ce3 are to reexecute user
operations and to reintegrate results with the servers on
behalf of its weakly-connected client. There are three
reasons why we suggest that reexecutions should not be
done on the servers but rather on a surrogate. First, we want
to avoid adding extra workload to the servers, which, being
the focal points of the systems and the “hot spots” of
activities, are probably already the bottleneck of the
systems. Second, by using per-client surrgoates, we can
more easily ensure that their execution environments
closely match those of their respective clients. Third, we
can avoid requiring the servers to execute arbitrary and
potentially malicious binaries supplied by users.

The following are the desired properties of a surrogate
machine:

1. It should be strongly connected to the server, so that
the shipping of the reexecution result to the server
can be done cheaply.

2. It should provide an execution environment as
similar as possible to the weakly-connected client
that it services.

3. It should be at an adequate level of security, and
process suitable authentication tokens for the user
requesting services.

We currently propose that each weakly-connected client
will have its own dedicated and statically assigned

3. We pick “surrogate” as the name, instead of its synonyms proxy and
agent, to differentiate our concept from other computer concepts, such as
“web proxy” or “Internet search agent.”

surrogate. This is conceptually most simple to the users
and system administrators. There may be a concern about
the need of extra hardware for surrogates. However, in
many cases, the surrogate machines are already in place
and can be used for free. This is because many users own
both a desktop machine and a notebook machine—the
former usually sits idle while the user travels. In any case, it
is possible to extend our model so that a surrogate machine
will be shared by multiple clients, but we leave this as
future work.

4 CORRECTNESS

4.1 Strategies for Preserving Correctness

We define a round of operation shipping to be correct if the
set of values (CML records) that the servers received from
the surrogate is totally identical to what the servers would
have received from the client using value shipping.

There are five components in our strategies for preser-
ving the correctness. First, we increase the likelihood that a
user operation will be repeated on the surrogate (i.e., it will
produce exactly the same set of values as its original
execution). We do this by having the surrogate be
identically configured as the client, and by restoring the
execution context upon reexecution (Sections 3.4). Second,
the surrogate will try to fix any nonrepeating side effects
that may have happened (Sections 4.3, 4.4, and 4.5). Third,
the surrogate will adjust the regenerated file-system objects’
metadata, such as modification time, £id (which is the low-
level identifier of file-system objects), and store ID (which is
used for concurrency control). This adjustment is needed
since these metadata are time-dependent and will not
repeat upon reexecution. For each of them, the reference
value for adjustment is the one that was used in the original
execution. Fourth, after that, the surrogate validates that the
final set of values in the surrogate is identical to the original

1416

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 51, NO. 12, DECEMBER 2002

File System

replaying session

s File System File Server
on Client on Surrogate
Interactive
lication
request UserOpPropagate P
ohase prropag fork o
- . I
ReexecTid = pid SIGUSR? : ! sigsuspend
| setpgid
— replay phase v
1 exec latex

or exec gimp

kel
o
V1 (STORE) i
o
V2 (STORE) g
\’m (STORE),
__child terminated

— validation phase

iceRei

——reintegration/aborting phaD

reply
inalization phase

of reintegration

Time

ReexecTid =0
finalization reply
phase
N
another | _______ViceReintegrate
round

Fig. 6. Shipping stage. This figures shows the five phases of operation shipping: requesting, replaying, validation, reintegration/aborting, and
finalization (shown as differently shaded bars). Also, shown in the lower part of figure is the fallback mechanism, which is needed only when the
shipping of a user operation is not successful. Examples of the user operation being reexecuted are latex or gimp. Examples of file-system

operations V1, V5, ..
shipping.

(Section 4.2). Finally, if a reexecution does not pass the
validation procedure, the file system will fall back on value
shipping. Note that, in this case, performance will suffer but
correctness will not.

4.2 Validation

Validation is the procedure for a surrogate to ensure that
the CML records resulting from the replaying of a user
operation are identical to their counterparts on the client.
The surrogate receives a copy of all the client records,
except STORE records, for which only their fingerprints
(defined below) are received. The surrogate then compares
its own set of records with that of the surrogate. A
reexecution is validated if and only if the two sets of
records match each other. For STORE records, only their
fingerprints are compared.

A fingerprint function is also known as a one-way hash
function. It produces a fixed-length fingerprint f(M) for a
given arbitrary-length message M. In our application, the
content of a file is the messages for which a fingerprint is
computed. A good fingerprint function should have two
properties: 1) computing f(M) from M is easy and 2) the

., Vi, are STORE, RENAME, and MKDIR. Note that the VIOC GET APP OPLOG syscall applies to only application-aware operation

probability P.osion that another message M’, M' # M, will
give the same fingerprint is small. Our file system employs
MD5 (Message Digest 5) fingerprints. Each fingerprint has
128 bits, so the overhead is very small. Also, the probability
Peoniision is very small and is in the order of 1/2%1 [29], [34].

4.3 Nonrepeating Side Effects

In the early stage of this project, we expected the reexecutions
of all target applications would repeat their original execu-
tions since we focus only on applications that perform
deterministic tasks. To our surprise, we found that some of
our target applications actually exhibit nonrepeating side
effects. Fortunately, as discussed in the next two sections, we
find that there are techniques to handle these side effects and,
thus, we can still use operation shipping with these
applications. Note that these handling techniques are done
on a best-effort basis only. That is, if they fail, the file system
simply falls back on value shipping. Note also that we do not
claim that we can handle all types of side effects, but we can
indeed handle the two common ones that we found. In effect,
we think the principle illustrated here is the following: If a
surrogate finds that a reexecution is not repeating, before it

LEE ET AL.: OPERATION SHIPPING FOR MOBILE FILE SYSTEMS

gives up and falls back to value shipping, it should first try to
fix the reexecution discrepancies.

4.4 Nonrepeating Side Effects Due to Time Stamps

Some applications (such as rp2gen, ar, and LaTeX) put
time stamps into the files that they produce. These time
stamps cause trouble to the validation of reexecutions
because a regenerated file will have a few bytes different
from the original. To maintain correctness of update
propagation, one naive solution is to reject the reexecution.

However, we found that we can avoid naive rejections by
viewing the changed bytes as if there were transmission
“errors.” With such a view, we use the existing technique of
forward error correction (FEC) [10], [8] to restore the
discrepancies.* The client precomputes FEC parity blocks
and sends them to the surrogate. Upon reexecution, if the
surrogate finds that a regenerated file does not give the
same fingerprint as its counterpart, it invokes a FEC
procedure: The parity block is the one precomputed by
the client, and the data block is the regenerated file. For
many cases, FEC can restore the reexecution discrepancies,
and restore the file to the client’s version.

The beauty of the technique is that the file system does
not need to know the exact location of the time stamps
embedded. Also, the file system can always fall back to
value shipping if the FEC procedure cannot restore the
discrepancies (for example, when the time stamps have too
many bytes). Note that this is a novel use of FEC: while
traditionally FEC is used for correction of communication
errors, here we use it to restore reexecution discrepancies.
In other words, while traditionally the data blocks are sent
together with the parity blocks, here the data blocks are
regenerated by reexecutions.

The additional network traffic due to the error correction
code is quite small. In our implementation, we use Reed-
Solomon code, for which the parameters can be chosen
according to the desired error-correction capability. We
choose to use a symbol size of 16 bits (2 bytes), and a
correction capability of 16 errors (32 bytes); therefore, each
block has 65,503 data symbols (131,006 bytes) and 32 parity
symbols (64 bytes). The overhead is thus 2z = 0.049%.
Reed-Solomon code fits our purpose well, but it has a
weakness: It cannot correct discrepancies that change length
(which may happen, for example, when timestamps are
represented as human readable strings such as “9:17” or
“10:17"). We still favor it over other algorithms, such as
the rsync algorithm [36] (which can handle length change),
since it has a smaller overhead on network traffic.

4.5 Nonrepeating Side Effects Due to Temporary
Files

Some applications, for example ar, use temporary files in
their executions. At the end of executions, some of these files
are not deleted but only renamed. Fig. 7 shows the CML
records on a client and a surrogate after two executions of a
hypothetical user operation “ar rv libsth.a foo.o
bar.o,” which builds a library file 1ibsth.a from two
object modules foo.o and bar.o. Here, ar uses two
temporary files sta09395 and stal6294, whose name are
generated pseudorandomly.

4. We are indebted to Matt Mathis of Pittsburgh Supercomputer Center
for suggesting this idea to us.

1417

CML of CML of
Original Execution Re-execution
‘ head ‘ head
‘ Create sta09395 | ‘ Create sta16294 |

‘ Store sta09395 | ‘ Store sta16294 |

‘ Remove libsth.a | ‘ Remove libsth.a |

Rename sta09395
libsth.a

Rename sta16294
libsth.a

V tail V tail

Fig. 7. CMLs of two executions of ar. The client-modify logs of two
executions of the application ar. The log is implemented as a list of
entries, each of which records some low-level file-system operations
performed on a client. In this example, the operations are Create,
Store, Remove, Rename, and they operate on files named sta09395,
stal6294, and 1libsth.a.

To maintain correctness of update propagation, our file
system might have to reject the reexecution since the CML
records are different. However, again, we can avoid this
naive rejection by noting that the difference is only in the
intermediate states. That is, the temporarily files are both
renamed to 1ibsth.a at the end of the executions, so the
final states of the file systems will actually be the same.
With this observation, we add a procedure of temporary-file
renaming to compensate for the intermediate nonrepeating
side effects. In the procedure, the surrogate scans the sets of
records and identifies all the temporary files by noting that
they are created and, subsequently, renamed within a user
operation. It renames the temporary files of the surrogate
using the respective names chosen by the client. In our ar
example, the temporary file stal6294 will be renamed to
sta09395.

Before we conclude this section, let us explain why we
choose to validate at the CML level. Some may suggest that
we can validate after CML records are applied on the
servers (i.e., after reintegration) and then by comparing the
final file-system states—conceivably this alternative ap-
proach would incur less false negatives and avoid those we
have seen above. There are two reasons behind our design.
First, CML records capture the essence of the changes to be
made on the file-system states, and comparing them is easy.
Second, and more importantly, we need to keep the option
of aborting an operation-shipping transaction should the
validation fail. Aborting these transactions can be done
more easily before reintegration—we can simply discard
those CML records on the surrogate.

5 EVALUATION

We have performed two sets of controlled experiments for
the application-transparent and application-aware cases
respectively. The first set has been reported before ([18]),
so we may omit some details for the first set and focus more
on the second set.

5.1 Experimental Setup

The two sets of experiments were performed in two different
time periods, so the hardware used was slightly different. For

1418

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 12, DECEMBER 2002

Test | Nature App L, Lop | Ly/ Loy
Kbytes | Kbytes
T1 | rp2gen callback.rpc2 o 28.7 2.0 14.4
T2 | rp2gen adsrv.rpc2 v 775 1.9 40.8
T3 | yacc parsepdb.yacc Vv 237 1.0 23.7
T4 | c++ -¢ counters.cc -0 counters.o Vv 27.1 19 143
T5 | c++ -c pdlist.cc -o pdlist.o Vv 63.4 1.8 35.2
T6 | c++ -¢ fso_dacmon.cc -o fso_dacmon.o | / 266.3 2.0 133.2
T7 | c++ parserecdump.o -o parserecdump | / 239 2.0 12.0
T8 | arrvlibdira ... VI 702 1.9 36.9
T9 | arrv libfaila ... VD 3640 22| 1655
T10 | tar xzvf coda-doc-4.6.5-3-ppt.tgz Vv 271.8 4.7 57.8
T11 | make coda (in coda-src/blurb) v 71.6 2.3 31.1
T12 | make coda (in coda-src/rp2gen) Vv 242.0 5.9 41.0
T13 | tar cvf update.tar ... V4 60.2 1.0 60.2
T14 | sgml2latex guide.sgml N4 42.0 1.0 42.0
T15 | sgml2latex rvm_manual.sgml Vv 270.3 1.1 245.7
T16 | latex usenix99.tex VO 94.1 1.4 672

Fig. 8. Application-transparent operation shipping: traffic reduction. Sixteen tests were run using nine applications with real-life files. The column
labeled App indicates the applicability of operation shipping to these tests: / means applicable, x otherwise. (In this test set, operation shipping was
applicable to all tests.) If there are numbers in bracket in the same column, they mean techniques for handling nonrepeating side effects were
needed—T1) for time stamps (Section 4.4) and 2) for temporary files (Section 4.5). The column labeled L, and L,, show the network traffic, in Kbytes,
of value and operation shipping, respectively; the final column L,/L,, shows the traffic reduction.

the first set, the client, the surrogate, and the server machine
were a Pentium 90MHz, a Pentium MMX 200MHz, and a
Pentium 90MHz machine respectively, all running Linux
kernel 2.0.35. For the second set, they were a Pentium MMX
200MHz, a Pentium II 300MHz, and a Pentium 90MHz
respectively, and were running Linux kernel version of 2.2.5,
2.2.5, and 2.0.34 respectively. The network between the
surrogate and the server was a 10-Mbps Ethernet. The
network bandwidth between the remote client and the
surrogate varied in different tests, and we used the Coda
failure emulation package (1ibfail and filcon) [32] to
emulate different network bandwidths on a 10-Mbps
Ethernet.

As listed in Figs. 8 and 9, there were 16 tests,
T1,72,---,7T16, in the first test set, and 11 tests,
T30,731,---,7T40, in the second. Each of them represented
a certain user task and comprises of a group or a single user
operations. Each test was repeated three times. We are mainly
interested in three aspects of operation shipping: applic-
ability, reduction of network traffic, and speedup. These will
be discussed one by one in the following sections.

5.2 Applicability
When the file system can use a user operation to ship an
update, we say operation shipping is applicable to the user
operation. We are interested to know the applicability with
common user operations. However, we anticipate that there
are cases when operation shipping is not applicable to some
user operations. These can happen when a user operation
does not repeat on the surrogate, yet its nonrepeating side
effects cannot be restored by techniques like those in
Sections 4.4 and 4.5. For example, we do not expect that
operation shipping will work with the -j <n> mode of GNU
make, which runs n jobs in parallel.

In our tests, for the application-transparent case, operation
shipping was applicable to all user operations, although three
applications did exhibit nonrepeating side effects, which

were restored by our handling techniques (Fig. 8). For the
application-aware case, operation shipping was applicable to
all user operations except one in 740, which involved a
function blur (Fig. 9). The function used current time value
as a random seed and produced globally different images
upon reexecution. We could have easily fixed the nonrepeat-
ing behavior by modifying the interface of the function, but
we chose not to do so since the function serves well as an
illustration on a limitation of operation shipping. We thus
continued our experiments with 740 dropped.

5.3 Network Traffic Reduction

We measured the traffic required for propagating the
update by value shipping and by operation shipping (L,
and L,,). Both the file data and the overhead were included
in the traffic. In particular, for operation shipping, all fields
in the operation logs: command, command-line arguments,
current working directory, environment list, file-creation
mask, metadata, fingerprints, and FEC parity blocks, were
all counted towards the traffic. We list the result in Figs. 8
and 9, which also show the traffic reduction L,/L,,. They
show that operation shipping can achieve very substantial
traffic reduction. For the application-transparent case, the
highest reduction factor was 245.7 (7'15); the smallest
reduction was 12 (1'7). For the application-aware case, the
corresponding numbers were 396.6 (1'34) and 33.9 (7'39).

5.4 Speedup

Since the elapsed time of update propagation depends
heavily on the network bandwidth, it was measured under
three different network bandwidths: 9.6, 28.8, and
64.0 kilobits per second. We denote the elapsed time as 7,
and T, for value shipping and operation shipping. They were
the end-to-end measurements for completing a round of
update propagation using the respective approach. Specifi-
cally, T,, included the time needed for shipping the operation

LEE ET AL.: OPERATION SHIPPING FOR MOBILE FILE SYSTEMS 1419
Test | Nature App L, Lop | Ly/Lop
Kbytes | Kbytes

T30 | Embossment v 244.0 21 116.2
load, emboss, save

T31 | Annotation Vv 184.8 2.3 80.3
load, text, move, anchor, save

T32 | Color inversion V4 128.9 2.1 61.4
load, invert, save

T33 | Color adjustment Vv 261.1 23 113.5
load., color_bal, bright_contr, save

T34 | BMP conversion v 951.8 2.4 396.6
load, save as bmp

T35 | Gradient Map v 118.4 2.1 56.4
load, choose map, gradient map, save

T36 | Canvas v 305.4 22 138.8
load, canvas, savc

T37 | Mosaic v 284.4 2.3 123.7
load, tile, save

T38 | Oil Painting v 350.4 2.2 159.3
load, oil_painting, save

T39 | Poster 4 71.2 2.1 339
load, posterize, save

T40 | Blurring X — — —
load, blur, save

Fig. 9. Application-aware operation shipping: traffic reduction. The 11 tests selected for evaluating the performance for application-aware operation
shipping. User operations invoked in each test are shown in smaller print. The column labeled App indicates the applicability of operation shipping to
these tests: |/ for applicable, x otherwise. The columns labeled L, and L,, show the network-traffic, in Kbytes, of value and operation shipping,

respectively; the final column L,/L,, shows the traffic reduction.

log, reexecution, MD5 computations, possible FEC proce-
dures, validation, final reintegration between the surrogate
and the server, etc. We also calculated the speedup T,/To,.
Our results show that operation shipping can achieve very
substantial speedups. For the application-transparent case,
these ranged from 1.4 times to 26.3 times. (Due to space
limitation, here we omit the individual numbers since they
have been reported before [18]). For the application-aware
case, the numbers are shown in Fig. 10. The speedups were
the most substantial in the 9.6-Kbps network, where eight out
of the 10 tests were accelerated by a factor exceeding 10, and
the maximum speedup was 48.8 (1'34) and the minimum 8.8
(1°39). In the other two networks, the speedups ranged from a
factor of 1.7 (130, 64-Kbps) to 21.9 (1'34, 28.8-Kbps).

In addition, operation shipping has another advantage:
the elapsed time of update propagation can be much less
sensitive to the network condition than that of value
shipping. This can be seen by a closer examination of
Fig. 10. For example, in 734, when the network bandwidth
degraded from 64 Kbps to 9.6 Kbps, the elapsed time for
value shipping increased almost proportionately (from 134
to 889 seconds), whereas the elapsed time for operation
shipping is affected only slightly (from 14.6 to 18.2 seconds).
This advantage, of course, comes from the fact that
operation shipping causes much less network traffic, and
it makes the performance of the file system more
predictable under various network conditions.

6 RELATED WORK AND ALTERNATIVE SOLUTIONS

6.1 Related Work

To the best of our knowledge, this is the first work that
attempts to propagate file updates by operations. However,

some general ideas and techniques resemble those used in
some previous work.

6.1.1 Database

The idea of operation-based update propagation has been
used in the database community [27]. However, our work is
distinctive since the context is different. First, logging and
shipping of operations in our case have to be done at a level
higher than the low-level file-system operations (such as
open, write, close), which are not compact enough for
our purpose. Therefore, we focus on the level of user
operations. Second, several new concepts are required in the
new context: replaying of user operation on the surrogate,
adjustment of status information, validation of replayed
operations, and the handling of nonrepeating side effects,
etc. We are also the first to use FEC to restore reexecution
discrepancies. Third, since we always have a fall-back
mechanism of value shipping, we can attempt operation
shipping more aggressively than in other contexts.

6.1.2 Directory Operations

For directory operations, operation shipping is not new to
Coda [14]. In fact, the Coda client-modify log can be viewed
as an operation log for directories and a value log for files.
When a directory is updated on a Coda client (e.g., when a
new file is created), instead of shipping the whole new
directory to the server, the client ships only the update
operation (e.g., an insertion operation). Directory operations
are more like database operations since they can be mapped
directly to insertion, deletion, and modification of directory
entries. Our work is distinctive since we apply operation
shipping to file updates, which demands a number of new
concepts as we have already seen.

1420 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 12, DECEMBER 2002

Test | Name 9.6-Kbps 28.8-Kbps 64-Kbps
(Date size T, Top Ty/Top T, Top Tu/Top Ty Top To/Top
in Kbytcs) (s.d.) (s.d.) (s.d) (s.d.) (s.d) (s.d.)

T30 | Embossment || 226,487 22,852 9.9 76,640 21,662 3.5 34,285 20,300 1.7
(243.8) (613) (52) (325)y (353) (74) (2,028)

T31 | Annotation 171,485 8,333 20.6 58,267 6,767 8.6 25,927 6,064 43
(184.6) 471) (562) (890) (305) (23) (570)

T32 | Color 119,853 7,650 15.7 40,566 6,223 6.5 18,090 5,701 32
inversion (84) (560) (261) (285) 3) (299)
(128.7)

T33 | Color 242,607 11,757 20.6 82,303 10,395 7.9 36,679 10,377 3.5
adjustment (177) (590) (383) (568) (65) (273)
(260.9)

T34 | BMP 889,491 18,228 48.8 || 317,380 14,467 21.9 || 134,009 14,587 9.2
conversion (11,550) (1,550) (32,531) (16) (608) (1,172)
(951.6)

T35 | Gradient 113,546 7,830 14.5 37,278 6,253 6.0 16,670 5,728 29
Map (5,198) (591 (468 (591 67) (583)
(118.2)

T36 | Canvas 286,422 10,052 28.5 95,924 8,418 114 42,881 8,024 53
(305.2) (5.124) (315) (150) (269) (65) (489)

T37 | Mosaic 263,713 16,876 15.6 90,062 16,013 5.6 39,888 15,646 2.5
(284.2) (356) (300) (380) (870)) (286)

T38 | Oil 324,745 19,519 16.6 || 110,228 18,051 6.1 49,167 17,417 2.8
painting (156) 4n (23) (300) (44) (154)
(350.2)

T39 | Poster 66,179 7,506 8.8 22,531 5,788 3.9 10,059 5,260 1.9
(71.0) (144) (281) (69) (14) (86) (7

Fig. 10. Application-aware operation shipping: elapsed time and speedup. Each test is performed in three different network conditions: networks with
bandwidth of 9.6, 28.8, and 64.0 Kbps, respectively. For each network condition, there are three columns of data: the elapsed time for update
propagation using value shipping (Z;) and application-aware operation shipping (7,,), and the speedup (T’,/T5,). All time measurements are shown in
milliseconds. Each test/network combination was repeated three times, and the standard deviation (s.d) is shown in a parenthesis underneath each
time measurement. The data size of each test involved is shown in a parenthesis underneath the name of the test.

6.1.3 Reexecutions

Also, several previous research projects have made extensive
uses of reexecutions for different purposes, such as fault
tolerance, load balancing, and consistency guarantees. For
fault tolerance, a Unix process P can be backed up by another
process P,. If P crashes, then P, will repeat the execution of P
from a recent checkpoint, and will thereafter assume the role
of P [2]. For load balancing, a Unix process can migrate to
another host to reduce the load imposed on the original host
[4]. For consistency guarantees, a previous Coda project
proposed the notion of Isolation-Only Transaction. Users can
delimit portions of executions using this notion. When an
update conflict happens, Coda will reexecute the transaction
[19], [20] to resolve the conflicts. Our work is different to these
previous works in the specific goals and contexts.

6.2 Delta Shipping

To reduce the network traffic for shipping a file, sometimes
we can ship only the incremental difference, also called the
delta, between different versions of a file. This is the idea
behind utilities and algorithms such as diff, which works
for text files, and rsync, which works for binary files [36],
or even file systems such as LBFS ([26], [9]). It is also used in
web proxies [23], file archives [22], and source-file reposi-
tories [35], [28].

However, delta shipping has several limitations. First,
newly created files have no previous version (or we can say
the delta of a newly created files is as big as the whole file).

Second, the effectiveness of delta shipping largely depends
on how similar the two versions of a file are, and how those
incremental differences are distributed in the file. In
pathological cases, a slightly changed file may need a huge
delta. This can happen, for example, when there is an global
substitution of string in a text file, or when there is a global
brightness or contrast adjustment in an image file. In
general, we believe operation shipping can achieve a larger
reduction of network traffic.

Having that said, we believe that delta shipping can
complement our technique and improve the performance of
value shipping, which is still an essential mechanism of any
file system.

6.3 Data Compression

Data compression reduces the size of a file by taking out the
redundancy in the file. This technique has been used in file
systems [9], [1] and web proxies [23]. In general, however, the
reduction factors achieved by data compression are smaller
than those of operation shipping. This is because the former
operates generically, while the latter exploits high-level
information of user operations. For example, when we
compressed the traffic for value shipping Ly in Fig. 8 using
the popular gzip utility, which uses the Lempel-Ziv coding
(LZ77), we could reduce the traffic by a factor of 2.7 to 8.1 (see
[18]). These reductions were good but not as substantial as
those achieved by operation shipping, which ranged from
12.0 to 245.7 times. Nevertheless, like delta shipping, data

LEE ET AL.: OPERATION SHIPPING FOR MOBILE FILE SYSTEMS

compression can complement operation shipping and en-
hance the performance of value shipping in a file system.

6.4 Operation Shipping without Involving the File
System
Can we use operation shipping without involving the file
system? We can imagine a shell that logs every command a
user types, and, without involving the file system, the shell
remotely executes the same commands on a surrogate
machine. We believe, however, such a system will suffer
from severe limitations. First, if the file system had no
knowledge that the second execution was a reexecution, it
would treat the files produced by the two executions as two
distinct copies, and would force the client to fetch the
surrogate copy. Second, it might even think that there was
an update/update conflict. Finally, it cannot ensure the
correctness of the reexecution using the procedures described
in Section 4. In our opinion, operation shipping must involve
the file system.

7 CONCLUSION

This paper reports our experience with operation shipping
for both the application-transparent and the application-
aware cases. We have implemented a prototype. The main
component of the system is an extended version of the Coda
File System. We also make minor extensions to the Bourne
Again Shell and the GIMP. They demonstrate that, to
participate in operation shipping, existing noninteractive
applications need no modification, and existing interactive
applications need only minor modifications. We have also
evaluated the prototype in controlled experiments and
demonstrated that operation shipping can achieve substan-
tial performance improvements.

In a broader sense, we carry out our work with the
following philosophy. When mobile computers are at the
mercy of weak connectivity, it is the file system rather than
the users who should adapt to the environment. In our
context, without an efficient update-propagation scheme,
users would have to adapt their behaviors to the unpleasant
weak network environment. For example, a mobile user
would choose to work on a local file system rather than a
distributed file system (and he would manually copy files
over when needed). Our goal is to save users from these
troubles. The ideal of mobile computing is to let users to
carry out their work everywhere, without having to worry
about the constraints imposed by the environments. With
this work, we hope we are one more step closer to this ideal.

ACKNOWLEDGMENTS

The authors would like to thank Matt Mathis for giving
them the idea of using FEC for handling the side effect of
time stamps, and Phil Karn for allowing them to incorpo-
rate his Reed Solomon Code implementation in their
prototype. This work is, of course, built upon the enormous
work done by other current and past members of the Coda
File System group. They would also like to thank Robert
Baron, Peter Braam, Maria Ebling, David Eckhardt, Jan
Harkes, James Jay Kistler, Puneet Kumar, Qi Lu, Hank
Mashburn, Lily Mummert, Brian Noble, Henry Pierce, Josh

1421

Raiff, and David Steere for their great effort. They also
thank the anonymous reviewers for their input and
comments. This research was partially supported by the
Defense Advanced Research Projects Agency (DARPA), Air
Force Material Command, USAF under agreement number
F19628-96-C-0661, the Intel Corporation, and the Novell
Corporation. The views herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of DARPA, Intel, Novell, or the US government.

REFERENCES

[1] D. Bachmann, P. Honeyman, and L. Huston, “The Rx Hex,” Proc.
First IEEE Workshop Services in Distributed and Networked Environ-
ments, June 1994.

[2] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle,
“Fault Tolerance Under UNIX,” ACM Trans. Computer Systems,
vol. 7, no. 1, Feb. 1989.

[3] PJ. Braam, “The Coda Distributed File System,” Linux J., June
1998.

[4] F. Douglis and J. Ousterhout, “Transparent Process Migration:
Design Alternatives and the Sprite Implementation,” Software-
Practice and Experience, vol. 21, no. 8, pp. 757-785, Aug. 1991.

[5S] Free Software Foundation. BASH—The Official Web Site, http://
www. fsf.org/software /bash/bash.html. 2002.

[6] http://www.gimp.org. 2002.

[71 Coda Group, Coda File System—The Official Web Site, http://
coda.cs.cmu.edu. 2002.

[8] A. Houghton, The Engineer’s Error Coding Handbook. Chapman &
Hall, 1997.

[9] K. Scott, “Review: AirSoft’s AirAccess Keeps Everything in Sync,”
Network Computing, vol. 6, no. 7, June 1995, also available from
http:/ /www .networkcomputing.com /607 /607rev3.html.

[10] P. Karn, Error Control Coding, a Seminar handout, available from
http:/ /people.qualcomm.com/karn/dsp.html. 2002.

[11]]J.J.Kistler, “Disconnected Operation in a Distributed File System,”
PhD thesis, Carnegie Mellon Univ., School of Computer Science,
1993.

[12] JJ. Kistler and M. Satyanarayanan, “Disconnected Operation in
the Coda File System,” ACM Trans. Computer Systems, vol. 10, no. 1,
Feb. 1992.

[13] L. Kleinrock, “Nomadic Computing—An Opportunity,” Computer
Comm. Rev., vol. 25, no. 1, Jan, 1995.

[14] P. Kumar and M. Satyanarayanan, “Log-Based Directory Resolu-
tion in the Coda File System,” Proc. Second Int’l Conf. Parallel and
Distributed Information Systems, Jan 1993.

[15] O.S. Kylander and K. Kylander, GIMP: The Official Handbook, The
Coriolis Group, Also available from http://manual.gimp.org,
1999.

[16] Y.W. Lee, Prototypes for Operation Shipping - Download Location,
http:/ /www.cse.cuhk.edu.hk/~clement/source_code/, 2002.

[17] Y.W. Lee, “Operation-Based Update Propagation in a Mobile File
System,” PhD thesis, The Chinese Univ. of Hong Kong, Dept. of
Computer Science and Eng., Jan. 2000.

[18] Y.W. Lee, K.S. Leung, and M. Satyanarayanan, “Operation-Based
Update Propagation in a Mobile File System” Proc. USENIX 1999
Ann. Technical Conf., June 1999.

[19] Q. Lu, “Improving Data Consistency for Mobile File Access Using
Isolation-Only Transaction,” PhD thesis, Carnegie Mellon Univ.,
School of Computer Science, May 1996.

[20] Q. Lu and M. Satyanarayanan, “Improving Data Consistency in
Mobile Computing Using Isolation-Only Transactions,” Proc. Fifth
IEEE HotOS Topics Workshop, May 1995.

[21] Q. Lu and M. Satyanarayanan, “Resource Conservation in a
Mobile Transaction System,” IEEE Trans. Computers, vol. 46 no. 3,
Mar. 1997.

[22] J. MacDonald, “Versioned File Archiving, Compression, and
Distribution,” submitted for the Data Compression Conf., an
earlier version is available from http://www . XCF.Berkeley.edu/
jmacd/xdelta.html. 1998.

[23] J.C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy,
“Potential Benefits of Delta Encoding and Data Compression for
HTTP,” Proc. ACM SIGCOMM 97, 1997.

1422

(24]

[25]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(33]

[36]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

L.B. Mummert, “Exploiting Weak Connectivity in a Distributed
File System,” PhD thesis, Carnegie Mellon Univ., School of
Computer Science, 1996.

L.B. Mummert, M.R. Ebling, and M. Satyanarayanan, “Exploiting
Weak Connectivity for Mobile File Access,” Proc. 15th ACM Symp.
Operating Systems Principles, Dec. 1995.

A. Muthitachareon, B. Chen, and D. Mazieres, “A Low-Bandwidth
Network File System,” Proc. 18th ACM Symp. Operating Systems
Principles (SOSP “01), Oct. 2001.

K. Patersen, M.]. Spreitzer, D.B. Terry, M.M. Theimer, and A.J.
Demers, “Flexible Update Propagation for Weakly Consistent
Replication,” Proc. 16th ACM Symp. Operating Systems Principles,
Oct. 1997.

The FreeBSD Documentation Project. CVSup: in FreeBSD Handbook,
available from http://www.freebsd.org/handbook/cvsup.html,
2002.

R. Rivest, The MD5 Message-Digest Algorithm, Internet RFC 1321,
available from

http:/ /theory.lcs.mit.edu/~rivest/publications.html, Apr. 1992.
M. Satyanarayanan, “The Evolution of the Coda File System,”
ACM Trans. Computer Systems, vol. 20, no. 2, pp. 85-124, May 2002.
M. Satyanarayanan, “Fundamental Challenges in Mobile Comput-
ing,” Proc. Fifteenth ACM Symp. Principles of Distributed Computing,
May 1996.

M. Satyanarayanan, M.R. Ebling, J. Raiff, P.J. Braam, and J. Harkes,
“Coda File System User and System Administrators Manual,”
School of Computer Science, Carnegie Mellon Univ., available from
http:/ /www.coda.cs.cmu. edu/doc/html/index.html. 2000.

M. Satyanarayanan,].J. Kistler, P. Kumar, M. Okasaki, E. Siegel,
and D. Steere, “Coda: A Highly available File System for a
Distributed Workstation Environment,” IEEE Trans. Computers,
vol. 39, no. 4, Apr. 1990.

B. Schneier, Applied Cryptography, second ed. John Wiley & Sons,
Inc., 1996.

Cyclic Software. Concurrent Versions System (CVS), available from
http:/ /www.cyclic.com/, 2002.

A. Tridgell and P. Mackerras, “The RSYNC Algorithm,” Technical
Report TR-CS-96-05, The Australian Nat'l Univ., available from
http:/ /samba.anu.edu.au/rsync/, June 1996.

NO. 12, DECEMBER 2002

Yui-Wah Lee received the BSc and the MPhil
degrees both in electrical and electronic engi-
neering, from the University of Hong Kong, and
the PhD degree in computer science and
engineering from the Chinese University of Hong
Kong in 2000. He is currently a member of the
technical staff in the Networking Research
Laboratory at Bell Laboratories Research of
Lucent Technologies, Inc, and was a visiting
scholar and a member of the Coda File System
research group at Carnegie Mellon University. Dr. Lee’s research
interests are system design and implementation in general, and mobile
computing, and networking in particular. He is a member of the |IEEE.

Kwong-Sak Leung (M’77-SM’89) received the
BSc in engineering and PhD degrees in 1977
and 1980, respectively, from the University of
London, Queen Mary College. He worked as a
senior engineer on contract R&D at ERA
Technology and later joined the Central Elec-
tricity Generating Board to work on nuclear
power station simulators in England. He joined
the Computer Science and Engineering Depart-
ment at the Chinese University of Hong Kong in
1985, where he is currently professor and
chairman of the department. Dr. Leung’s research interests are in soft
computing, data and knowledge engineering, and software systems. He
has published more than 160 papers and two books. He has been a
chair and a member of many program and organizing committees of
international conferences. He is on the Editorial Board of Fuzzy Sets and
Systems and an associate editor of International Journal of Intelligent
Automation and Soft Computing. He is a senior member of the IEEE, a
chartered engineer, a member of IEE and ACM, and a fellow of HKCS
and HKIE.

Mahadev Satyanarayanan received the Bache-
lors and Master's degrees from the Indian
Institute of Technology, Madras, India, and the
PhD in computer science from Carnegie Mellon.
He is an experimental computer scientist who
has pioneered research in the field of mobile
information access. One outcome of this work is
the Coda File System, which supports discon-
nected and bandwidth-adaptive operation. Key
ideas from Coda have been incorporated by
Microsoft into the IntelliMirror component of Windows. Another outcome
is Odyssey, a set of open-source operating system extensions for
enabling mobile applications to adapt to variation in critical resources
such as bandwidth and energy. Coda and Odyssey are building blocks
in Project Aura, a research initiative at Carnegie Mellon to build a
distraction-free ubiquitous computing environment. Earlier, Satyanar-
ayanan was a principal architect and implementor of the Andrew File
System, which was commercialized by IBM. Dr. Satyanarayanan is the
Carnegie Group Professor of Computer Science at Carnegie Mellon
University. He is currently on partial sabbatical, serving as the founding
director of Intel Research Pittsburgh. He is the founding Editor-in-Chief
of IEEE Pervasive Computing. He is a fellow of the IEEE and a member
of the IEEE Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

