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Abstract 

While algorithms for cooperative proxy caching have been 
widely studied, little is understood about cooperative- 
caching performance in the large-scale World Wide Web en- 
vironment. This paper uses both trace-based analysis and 
analytic modelling to show the potential advantages and 
drawbacks of inter-proxy cooperation. With our traces, we 
evaluate quantitatively the performance-improvement po- 
tential of  cooperation between 200 small-organization prox- 
ies within a university environment, and between two large- 
organization proxies handling 23,000 and 60, 000 clients, re- 
spectively. With our model we extend beyond these popula- 
tions to project cooperative caching behavior in regions with 
millions of clients. Overall, we demonstrate that cooperative 
caching has performance benefits only within limited popu- 
lation bounds. We also use our model to examine the impli- 
cations of  future trends in Web-access behavior and traffic. 

1 Introduction 

Cooperative caching - the sharing and coordination of 
cache state among multiple communicating caches - has 
been shown to improve the performance of file and virtual- 
memory systems in a high-speed, local-area network envi- 
ronment [3, 17]. For example, when a file-page miss occurs, 
the local file cache may transfer the page from the file cache 
on another node. Cooperative caching works in this environ- 
ment because network transfer time is much smaller than the 
disk access time required to service a miss. 

Internet proxy caching has become a commonplace ap- 
proach for improving the performance of Web browsers. 
Typically, the proxy sits in front of an entire company or 
organization. By caching requests for a group of users, a 
proxy can quickly return documents previously accessed by 
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other clients. Ultimately, though, the hit rate of the proxy 
is a function of the size of the population it manages - a 
size often dictated by political, organizational, or geographic 
considerations. An obvious question, then, is whether mul- 
tiple proxies should cooperate with each other in order to 
increase total client population, improve hit ratios, and re- 
duce document-access latency. Whether such cooperative 
proxy caching is a useful architecture for improving perfor- 
mance depends on a number of factors. These include the 
sharing patterns of  documents across organizations, the ratio 
of inter-proxy communication time to server fetch time, and 
the scale at which cooperation is undertaken. 

Several cooperative-caching protocols have been pro- 
posed [9, 16, 28, 30, 33]; however, few studies have exam- 
ined cooperative Web caching from a systemic viewpoint. 
As a result, we know neither the environments in which co- 
operative caching :is useful (if any) nor its potential perfor- 
mance benefits. Answering such questions has been difficult 
in the past, because studying proxy cooperation requires si- 
multaneous traces from multiple proxies. 

In this paper, we take a two-pronged approach to explor- 
ing the limits and potentials of cooperative proxy caching. 
As the first approach, we collect and analyze traces from 
two environments: the University of Washington and the Mi- 
crosoft Corporation. As a key component of our university 
trace, we identify each client in terms of its membership in 
one of about 200 university departments or programs. This 
gives us the equivalent of a simultaneous trace of 200 di- 
verse, independent organizations, permitting us to analyze 
document sharing among those organizations and to measure 
the potential benefits of  cooperation among organization- 
based proxies. We examine latency and bandwidth benefits 
of proxy caching for this data, as well. We then use the Mi- 
crosoft trace of employee traffic to the Internet to explore the 
potential of cooperation between larger organizations. To 
do this, we analyze traces from Microsoft and the university 
that we collected over the same time period and processed 
with the same anonymization function. This permits a direct 
computation of the degree of document sharing, and hence 
the benefit of sharing, between two proxies each handling 
tens of thousands of clients. 

As the second approach, we develop an analytic model 
of Web behavior that extends beyond the limits of our trace 
results. The model permits us to examine the impact of 
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larger population sizes, to explore the tradeoffs among var- 
ious cooperative-caching schemes, and to speculate on the 
performance implications of future trends. 

Our results show the benefits of cooperative caching 
among collections of small organizations. However, we 
show that cooperative caching is unlikely to have signifi- 
cant benefits for larger organizations or populations. That is, 
with current sharing patterns, there is little point in designing 
highly scalable cooperative-caching schemes; all reasonable 
schemes will have similar performance in the low-end pop- 
ulation range where cooperative caching works. Thus, the 
crucial problem that must be solved to improve Web perfor- 
mance is how to increase document cacheability. 

The paper is organized as follows. The next section ex- 
amines previous work and its relationship to our study. Sec- 
tion 3 describes our traces and presents and analyzes data 
from the traces. Section 4 develops an analytic model of 
steady-state Web proxy caching, and uses the model to study 
the performance of large-scale proxy caches. Section 5 then 
uses the model to compare cooperative caching schemes, 
and Section 6 summarizes and concludes. 

2 Related work 

Web tracing and caching are highly active research areas. 
Recent studies of Web traffic include analyses of Web ac- 
cess traces from the perspective of browsers [11, 26], prox- 
ies [2, 5, 6, 7, 10, 13, 14, 18, 20, 23, 30], and servers [1, 
4, 29]. Earlier tracing studies were limited in request rate, 
number of requests, and diversity of population. The most 
recent tracing studies have been larger and more diverse. 
In addition to static analysis, some studies have also used 
trace-driven cache simulation to characterize the locality and 
sharing properties of very large traces [2, 6, 14, 18, 20, 23] 
and to study the effects of cookies, aborted connections, 
and persistent connections on the performance of proxy 
caching [6, 18]. 

Researchers have studied the temporal locality of Web 
proxy traces and examined how hit-ratio depends, asymp- 
totically, on cache size and the number of requests. Sev- 
eral interesting findings have been identified. First, it has 
been well-documented that, for most traces, the relative fre- 
quency with which Web pages are requested follows a Zipf- 
like distribution, where the number of requests to the i th 

most popular document is proportional to 1 / i  '~ for some 
constant a [2, 5, 8, 11, 19, 24]. Second, for infinite-sized 
caches, it has been shown empirically and analytically that 
the hit ratio for a Web proxy grows logarithmically with the 
client population of the proxy and the number of requests 
seen by the proxy [5, 8, 14, 20, 24]. 

There has also been extensive work on cooperative Web 
caching as a technique to reduce access latency and band- 
width consumption. Cooperative Web caching proposals in- 
clude hierarchical schemes like Harvest and Squid [9, 32], 
hash-based schemes [21, 35], directory-based schemes [16, 
27, 33] and multicast-based schemes [28, 34]. Although 
each of these research efforts included a performance evalu- 
ation of the protocols proposed and a discussion of algorithm 
scalability, only [22] presents empirical evaluations of coop- 

eration for small populations, and none present empirical or 
analytical evaluations of the effectiveness of their schemes 
for the large client populations found in a wide-area setting. 

Using client traces, Krishnan et al. studied the utility 
of cooperation among three Bell Labs proxies with a small 
user population [22]. They concluded that cooperative Web 
caching can be useful, but that a cache manager was neces- 
sary to dynamically determine when to cooperate, because 
of the extra server load imposed by cooperation. 

This paper expands on these previous research efforts. 
We use trace-based analysis to quantify the potential advan- 
tages and drawbacks of inter-proxy cooperation for small- 
and medium-sized organizations. We use analytic modelling 
to examine cooperative-caching performance in wider-area 
environments. Our model is inspired by the model of Bres- 
lau et al. [5]. We have augmented their assumptions with a 
model- of document rate of change, client request rate, and 
a small number of other parameters that allow us to study 
the steady-state behavior of cooperative-caching schemes as 
a function of the characteristics of the population they serve. 

3 Web document sharing and proxy caching 

This section poses and answers a number of questions about 
the potential of cooperative proxy caching. Before consider- 
ing specific caching algorithms, we will explore the bounds 
of cooperative-caching performance. Key questions include: 

1. What is the best performance one could achieve with 
"perfect" cooperative caching? 

2. For what range of client populations can cooperative 
caching work effectively? 

3. Does the way in which clients are assigned to caches 
matter? 

4. What cache hit rates are necessary to achieve worth- 
while decreases in document access latency? 

To answer these questions quantitatively, we have col- 
lected and analyzed Web access data from two environ- 
ments: (1) the University of Washington (UW), consisting 
of about 50,000 students, faculty, and staff, and (2) the Mi- 
crosoft Corporation (MS), consisting of about 40,000 em- 
ployees. Most significantly, the two traces were collected 
simultaneously and anonymized in the same way, allow- 
ing direct comparison of trace records, including URLs and 
server addresses. We use the UW trace as a way to analyze 
document sharing by 200 small, independent organizations 
within a diverse university; we use the UW and Microsoft 
traces together as a way to analyze document sharing across 
two large organizations. In both environments, we exam- 
ine the potential benefits of proxy cache coordination from 
the perspective of the clients and the network; in this study, 
we do not investigate the effects of cooperative caching on 
server load in general or under hot spot conditions. 

The following section presents results derived from these 
traces. In Section 4, we present an analytical model that goes 
beyond the limits of the trace to much larger populations. 
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Parameter UW Microsoft 
HTTP Requests 82.8 million 107ffmillion 
HTTP Objects 18.4 million 15.3 million 
Total Request Bytes 677 GB (N/A) 
Average Requests/Sec 137 199 
Clients 22,984 60,233 
Servers 244,211 360,586 
Duration 7 days 6 day's 6 hours 

Table 1. Overall trace statistics. 

3.1 Trace collection and characteristics 

While several client traces exist in the public domain [ 11, 13, 
14, 20, 26], most are several years old, and the information 
they contain is inadequate for our analysis. We therefore de- 
signed and implemented custom trace software and installed 
it on a computer connected to the outgoing switches through 
which our university's Internet traffic flows. Few proxies are 
deployed in our university, so we are able to see most of 
the Web client traffic generated from inside the university at 
the border. The traces are anonymized, but the anonymiza- 
tion preserves certain key aspects of the data that we require. 
In particular, we anonymize client IP addresses, but we first 
classify the client based on its "organizational" membership. 
This allows us to identify requests from different academic 
and administrative entities within the university, and classify 
each entity as a unique organization. We describe the use of 
this information later in this section. 

We have been collecting university traces since October 
1998; the trace used in this section was collected from May 
7th through May 14th, 1999 and therefore shows very recent 
access characteristics. Table 1 presents the high-level details 
of this trace. As the table shows, we saw about 83 million 
requests by 23,000 clients to 244,000 servers over the seven- 
day period in the UW trace. Using this data, we can deter- 
mine upper bounds on the performance of any cooperative 
caching algorithm. This tells us whether proxy cooperation 
is worthwhile even in the best case in our environment. 

We also processed traces collected by the proxies han- 
dling all outgoing traffic from Microsoft Corporation. These 
traces were collected on the same days that we collected our 
UW trace. Our software anonymizes both traces using the 
same functions, so that URLs and server IP addresses in 
them can be directly compared. Table 1 shows that in the 
May 7 to May 14th, 1990 period, we saw about 108 mil- 
lion requests by 60,000 clients to 360,000 servers in the Mi- 
crosoft trace. 

3.2 Simulation methodology 

The results presented in this section are based on Web cache 
simulations using our traces as input. This section discusses 
the methodology used for the experiments we performed. 

We make assumptions in our simulator that a real cache 
would not make, and therefore do not model reality exactly. 
However, our goal is to investigate behavior, not to exactly 
reproduce hit rates, and we believe that our assumptions 
do not change our conclusions about cache behavior. The 
caches we simulate are infinite-sized and do not model ex- 

pirations. As a result, they are somewhat optimistic. Real 
caches will incur misses due to capacity limitations that we 
do not model. However, capacity misses are rarely the bot- 
tleneck for Web caches. For example, only three percent of 
the requests to the Microsoft Web proxies from which we 
gathered our traces missed due to the finite capacity of the 
proxies (which have 9GB of RAM and 180GB of disk ca- 
pacity). Real caches will also expire some objects that our 
simulations keep alive in the cache. 

At the same time, our simulation experiments are conser- 
vative, because they include compulsory (cold start) misses. 
We minimize this effect by simulating traces over long peri- 
ods of time. We also exclude the effect of  compulsory misses 
using our steady-state model in Section 4. 

We simulate two kinds of Web caches, a "practical" 
cache and an "ideal" cache. A practical cache closely models 
the cacheability of documents according to the algorithms in 
the Squid V2 implementation [32]. Our cacheability pred- 
icate accounts for HTTP 1.I cache control headers, cook- 
ies, object names with suffixes naming dynamic objects, no- 
cache pragmas, uncacheable methods and response codes, 
and headers with Authorization and Vary fields. We re- 
ported the detailed breakdown of document cacheability in 
our traces in an earlier paper [37]. 

An ideal cache treats all documents as cacheable. It is 
well known that some Web objects, such as images used in 
advertisements, are marked uncacheable even though their 
contents do not change and could be cached. Future im- 
provements to Web protocols and cache implementations 
can potentially be more aggressive and cache those objects 
that practical proxies cannot currently cache. Since we can- 
not anticipate all future improvements and implement them 
in our simulator, we instead use an ideal cache to report the 
upper bound that such improvements can hope to achieve on 
our workloads. 

Many of the experiments examine cache performance as 
a function of client population. Because each UW modem 
is reused by many people, using a modem IP address to rep- 
resent a client would be inaccurate. As a result, we exclude 
modem traffic in our analyses and focus on LAN users. 

3.3 The impact of population size 

In a cooperative-caching scheme, a proxy forwards a miss- 
ing request to other proxies to determine if: (1) another 
proxy holds the requested document, and (2) that document 
can be returned faster than a request to the server. Whether 
such cooperation is worthwhile will depend on the num- 
ber of proxies involved, their distances (inter-proxy commu- 
nication latencies), their utilizations, the client populations 
served, and the complexity of the protocols used. 

The result of Cooperative proxy caching is simply to in- 
crease the effective client population. That is, at best, a col- 
lection of cooperating caches will achieve the hit rate of a 
single proxy acting over the combined population of all the 
proxies. In reality, the performance will be less than perfect, 
because proxies will not have perfect knowledge and will 
pay the overheads of inter-proxy communication latency. 
Examining a single, top-level proxy thus gives us an upper 
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Figure 1. Proxy cache request hit rate as a funct ion of 
cl ient population. 

bound on cooperative-caching performance. 
Figure 1 graphs hit rate vs. client population size for our 

traces, l The dark black lines in this graph show the behav- 
ior of the university population. The dotted black line shows 
the "cacheable hit rate," which corresponds to the hit rate 
from a practical cache that considers the cacheability char- 
acteristics of the documents. Both the shapes of the curves 
and the cacheable hit rates are roughly consistent with previ- 
ous proxy cache studies of client traces: [20, 23] both report 
hit rates above 50% (but disregard cookies), [14] reports hit 
rates of 40--45%, and [6] reports hit rates of 35% (but exag- 
gerates the effects of cookies, which can often be cached in 
HTTP 1.1). 

The solid black line in Figure 1 shows the "ideal hit 
rate" of an ideal cache for the UW trace, one that would 
be achievable tf all shared documents were cacheable. In 
the future, improvements to Web protocols may move the 
cacheable line closer to the ideal line. On the other hand, 
future changes in document characteristics may move the 
cacheable line in either direction. We explore this issue fur- 
ther in Section 4. 

The grey lines in Figure 1 show the behavior of the Mi- 
crosoft population. It is interesting to note that the ideal 
curve asymptote is higher by about 13% than that of the 
university environment, an indication that document sharing 
within Microsoft is much higher than within the university. 
This suggests, not surprisingly, that the Microsoft population 
is much more homogeneous in its Web-access behavior than 
the university population. However, we also see that the Mi- 
crosoft cacheable curve almost overlies the UW cacheable 
curve. This is a direct reflection of the different distributions 
of requests to cacheable documents in the traces; 60% of re- 
quests in the UW trace go to cacheable documents, but only 
51% of requests in the Microsoft trace do so. As a result, 
even though there is more sharing among Microsoft users, 
document cacheability currently prevents a Microsoft proxy 
cache from achieving a hit rate that is any better than a UW 

1 In this graph and the others that follow, the clients for a given 
population size are randomly selected out of the pool of clients seen 
in our traces. Unless otherwise specified, each point on the graphs 
shown is the mean of four independent random trials, and error bars 
show the standard deviation across these trials. 
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Figure 2. Mean and median request latency as a func- 
tion of cl ient populat ion for the UW trace. The error 
bars on the median curves are the min and max medi- 
ans across the trials. 

proxy cache. 
From this simple figure, we can draw several key con- 

clusions about cooperative caching. The graphs have a sharp 
knee at about 2500 clients. The steep increase in hit rate be- 
low that knee implies that a large potential benefit (hit rate 
increase) could exist from cooperative caching for multiple 
proxies with small client populations. For example, given 
10 proxies, each handling a population of a few hundred 
clients, cooperative caching has the potential to significantly 
improve the hit ratio seen by the clients of those proxies. 
The improvement occurs by increasing the total population 
of each proxy from 200 to 2000 clients. 

It is important to note that the total number of clients 
(below the knee) that can benefit from cooperative caching 
couM easily be handled by a single proxy cache for our 
traces and user populations. Often this will not be possible, 
however, because decisions of proxy placement are based on 
political or geographical factors, such as company organiza- 
tion, location, and so on. While one organization may not 
trust another to proxy all of its requests, it may be willing to 
cooperate with other proxies for performance reasons. 

Figure 1 also shows that hit rate increases very slowly 
with client population once past the knee of the curve. It 
is therefore not clear whether cooperative caching is benefi- 
cial in this region, for proxies whose populations are already 
above a few thousand clients. We will explore this question 
in more detail below and in Section 4. 

3.4 Hit rate vs. latency and bandwidth 
While many caching studies focus on hit rate, in the Web en- 
vironment it is ultimately latency, not hit rate, that is crucial 
to clients. From the perspective of Internet service providers, 
hit rate translates into bandwidth savings over costly Internet 
links. These bandwidth savings can also reduce wide-area 
network congestion, potentially improving the performance 
of the Internet as a whole. 
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Figure 3. Proxy cache byte hit rate as a function of 
client population for the UW trace. 

Figure 2 shows document latency in our university trace 
as a function of the number of clients using a proxy cache. 
The top three lines, from top to bottom, show mean last-byte 
latency: (1) without a proxy cache (i.e., as extracted from 
the trace), (2) with a proxy cache respecting cacheability, 
and (3) with an ideal proxy cache. The bottom three lines 
show median last-byte latency under the same three condi- 
tions. Note that, unlike other curves, the error bars on the 
median lines correspond to the minimum and maximum me- 
dian values among the trials at each population size. The 
three mean lines level out quickly, while the medians are 
essentially fiat. This implies that caching will have little im- 
pact on mean and median latency beyond very small client 
populations. The mean trace curve is not constant, because 
each point represents requests from different client popula- 
tion samples, and mean latency will vary from one sample 
to another. 

In Figure 2, the mean latency is much higher than the 
median due to many high-latency documents. Can coop- 
erative caching reduce the percentage of these high-latency 
documents? Calculating the percentage of documents with 
a last-byte latency below two seconds, though, implies that 
this is not the case. When graphed as a function of popu- 
lation, this percentage is effectively a horizontal line for all 
three caching policies described above with very little .differ- 
ence among them. The ideal line is the highest (90%), and 
no cache is the lowest (82%). The insensitivity to popula- 
tion and closeness of these values demonstrate that neither 
cacheability nor increasing population will significantly re- 
duce the number of high-latency documents. Our trace anal- 
ysis indicates that these documents are slow due to document 
size, network latency (e.g., from congestion, low-bandwidth 
links, long distances), or both. Also, as described below, 
shared documents tend to be smaller than non-shared ones, 
biasing misses towards larger documents that consequently 
take longer to download. 

A final dimension is bandwidth. Figure 3 shows the byte 
hit rate as a function of client population for the university 
trace. Once again, we see a knee in the curve at around 2500 
clients. Comparing these results to the hit rates given in Fig- 
ure 1, we can conclude that shared objects are smaller on av- 
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Figure 4. Bandwidth consumed as a function of client 
population for the UW trace. 

erage than other objects. Figure 4 shows the average band- 
width consumed as a function of client population for the 
three caching situations. We see that while caching reduces 
bandwidth consumption compared to no caching, there is no 
benefit to increased client population (i.e., there is no de- 
crease in the slope of the bandwidth line). 

3.5 Proxies and organizations 

We produced Figures 1 and 3 by computing the hit rate of 
random subsets of  clients at each population size; therefore, 
the figures assume that all clients are essentially identical in 
their access patterns. A crucial question is whether clients 
in a single organization, sharing a single proxy, have more 
in common with each other than with clients in different or- 
ganizations sharing other proxies. If  there is high locality 
within organizations, then populations smaller than the knee 
in Figure 1 could achieve the maximum hit rate. What ben- 
efit would clients in real organizations see if their proxies 
were to cooperate with other real organizational proxies? 

To answer this question is difficult, because it requires a 
simultaneous trace of a large number of proxies in the Inter- 
net. Such traces have not existed in the past. We have tried 
to answer the question in our university environment, using 
UW as a small-scale model of the broader networked com- 
munity. The University of Washington consists of a large 
collection of diverse organizations, e.g., museums of art and 
natural history, schools of nursing and dentistry, and depart- 
ments such as music, Scandinavian languages, and computer 
science. Think of each such organization as an indepen- 
dent business entity, with its own interests and focus, which 
would typically have its own proxy sitting on its connection 
to the Internet. 

In fact, somewhat fortuitously, few organizations on our 
campus currently employ proxies; this permits us to see most 
outgoing client requests and their responses. In our tracing 
software, before anonymizing each client's IP address, we 
first classify that client as belonging to one of about 200 
independent university organizations. In this way, we pre- 
serve organizational membership information while protect- 
ing client identities. In effect, this gives us a simultaneous 
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Figure 5. Breakdown of local and global proxy hit rates 
for the 15 largest UW organizat ions. 

70 1 uw 
= ~ ,  Random 

60 

50 

I1[ ~" 2o 

1 

15 Largest Organizations 

Figure 6. Comparison of the proxy hit rates for the 15 
largest UW and randomly populated organizations. 

trace of Web requests from 200 organizations. 
Figure 5 shows the ideal (left-hand bar) and cacheable 

(right-hand bar) hit rates for the 15 largest UW organiza- 
tions. The bars are labeled on the x-axis with the number of 
clients seen in the trace for each of the organizations shown: 
the smallest organization had 192 clients, while the largest 
had 978 clients. These bars thus represent 15 medium-sized 
companies or client communities. 

The lower portion of each bar shows the hit rate that 
would be seen by a local proxy acting on behalf of that or- 
ganization. The upper portion of the bar shows the improve- 
ment in hit rate that would be seen by that organization if all 
of the university's organizations used perfectly cooperating 
proxies. For the ideal bars, the average hit rate per group is 
52%. The average cooperative-caching hit rate, i.e., the rate 
that would be seen by a single proxy over all organizations 
or by a perfect cooperative-caching scheme, is 69%. For the 
cacheable hit rate bars, the average hit rate per group is 29%, 
and the average cooperative hit rate is 38%. Therefore, if 
perfect cooperative caching were possible, it would achieve 
a noticeable improvement in hit rate for these proxies. 

An interesting question raised above is whether clients in 
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Figure 7. Proxy cache hit rate as a funct ion of cl ient 
populat ion. 

our UW population request documents randomly, or whether 
their access patterns are related in some way to those of other 
members of the same organization. To answer this ques- 
tion, we grouped clients at random into organizations with 
the same sizes as the 200 real organizations and compared 
local hit rates. Figure 6 shows a comparison of the hit rates 
for the 15 largest UW and randomly assigned organizations. 
The result indicates that there is a small (about 4%) average 
increase in hit rates for the real organizations compared to 
the randomly assigned ones. Therefore, there is some lo- 
cality in organizational membership, but the impact is not 
significant in this case. 

A related question is whether a better grouping exists of 
clients to proxies, for example, one based on each client's 
document interests. To examine this question, we conducted 
a clustering study. Using the trace data, we clustered clients 
based on their document access vectors, using a standard 
clustering algorithm (K-Means) that attempts to optimize 
intra-cluster sharing. The existence of such groupings within 
the university might imply the existence of an improved 
wide-area caching scheme based on clustering. 

As with the university organizations, we compared the 
cluster-based client assignments to random assignments of 
clients into groups of the same size. The randomly assigned 
clusters have a consistently lower hit rate than the optimally 
clustered organizations. Somewhat surprisingly, the differ- 
ence between the two assignments is just slightly more than 
the difference between the UW and random organizations 
(about 5%). Again, there is some affinity in client access 
patterns, but the impact on hit rate is not significant. 

3.6 Impact of larger population size 
We have seen that cooperative caching can increase hit rate, 
perhaps substantially, below the knee of the curve in Fig- 
ure 1. What happens above the knee, i.e., can cooperative 
caching be effective in a wide-area network? Figure 7 shows 
the data from Figure I when it has been plotted on a log scale 
as a function of client population, fitted linearly using least 
squares, and then extrapolated past the client population we 
measured. 

This graph suggests a number of interesting conclusions. 
First, the slopes of the UW lines are greater than the Mi- 
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crosoft lines, a relation we could only infer indirectly from 
Figure 1. Second, we notice that the slopes of the UW ideal 
and cacheable lines are similar. This indicates that there 
is little correlation between sharing and the cacheability of 
documents for the UW population. However, the slope of 
the Microsoft cacheable line is only 60% of the slope of the 
ideal line. This indicates that cacheable documents were 
shared to a lesser degree than uncacheable documents for 
the Microsoft population. Third, the cacheability curves are 
limited by the fraction of requests to cacheable documents, 
which is 60% in the UW trace and 51% in the Microsoft 
trace. In both of these cases, cooperative caching among 
populations larger than 2.4 million does not increase the hit 
rate to cacheable documents. Fourth, even if all documents 
were cacheable, the ideal hit rate reaches a maximum at a 
population of 11 million users for the UW trace and 2.9 mil- 
lion for the Microsoft trace. 

The Microsoft client population is more homogeneous 
than the university population and therefore sees a higher 
degree of document sharing. Quantitatively, 83.8% of re- 
quests in the Microsoft trace are to previously requested doc- 
uments; in the UW trace, 70.8% of requests are to previ- 
ously requested documents. These statistics are the "ideal 
hit rates" that would be seen by a cache, if all documents 
were cacheable. But how much overlap is there to popu- 
lar documents between the two populations? We looked at 
the most popular documents requested by each of the two 
populations, where we defined "most popular" to be those 
documents accessed more than 500 times. In the UW trace, 
there were 11,500 such documents, and in the Microsoft 
trace, there were 17,000 such documents. Looking at the 
1000 most popular in each of the two populations, we see 
a 33% overlap; that is, of the 1000 most-popular documents 
accessed by Microsoft, 330 of them are also among the 1000 
most popular accessed by UW. Therefore, many of the same 
documents are popular in both organizations. 

In Section 4 we will present an analytical model to look 
in more detail at the behavior of cooperative caching in 
large-scale environments. Within the context of  our own 
traces, though, we can perform an interesting experiment to 
create a larger population. Suppose that we implemented 
cooperative caching between the University of Washington 
and the Microsoft proxies. From the perspective of the UW 
proxy, this increases the size of the population it sees by a 
factor of 3.6; from the point of view of the Microsoft proxy, 
population increases by a factor of 1.4. What is the im- 
pact of combining the two populations through cooperative 
caching? 

To estimate the benefit of cooperative caching between 
the two organizations, we did the following analysis. We 
ran the university trace through a simulated UW proxy; we 
then fed all misses to a second-level (cooperating) proxy 
preloaded with all of the objects seen in the Microsoft trace. 
Similarly, we ran the Microsoft trace simulating its proxy, 
with a second-level proxy preloaded with all objects seen by 
the UW trace. This gives us an idea of the maximum in- 
cremental hit-rate benefit each proxy would see if the two 
proxies would cooperate. 

Figure 8 shows the results of this measurement. From 
the figure, we see that the UW proxy, whose effective pop- 

100 

80 

60- 
fff 

I~ 40-  
..I- 

20- 

ol 

Figure 8. 

, , Cooperative 
I , -~ , ' ,~  I 

O O 

o o 

Hit rate benefit of cooperat ive caching be- 
tween UW and Microsoft proxies. 

ulation would increase 3.6-fold (from 23K to 83K clients), 
would see its ideal hit rate increase only 5.1% - from 70.1% 
to 75.9%; its cacheable hit rate would increase only 4.2% - 
from 42.7% to 46,9%. The Microsoft proxy, whose effec- 
tive population would increase by a factor of 1.4 (from 60K 
to 83K clients), would see its ideal hit rate increase 2.7% - 
from 83.8% to 86.5%; its cacheable hit rate would increase 
only 2.1% - from 42.3% to 44.4%. To allow a more di- 
rect comparison of these results, we ran another experiment 
where the second-level cooperating proxy was preloaded by 
only a portion of the Microsoft population, thereby increas- 
ing the effective population size for the UW population by 
the same factor of  1.4. In this experiment, the ideal hit rate 
for the UW proxy increased by 1.6%, and the cacheable hit 
rate increased by 1.3%. When scaled by equal factors, it is 
interesting to note that Microsoft gains more benefit by co- 
operating with the UW population than the UW population 
gains by cooperating with Microsoft. 

These results are disappointing, but not surprising. The 
reason for these very small increases is that the unpopu- 
lar documents are universally unpopular; therefore, it is un- 
likely that a miss in one of these large populations will find 
the document in the other population's proxy. For the most- 
popular documents, cooperation does not help either, be- 
cause only the first access (of the 500 plus accesses to a 
popular document) has the potential to benefit from another 
population's proxy. 

3.7 Summary 
In this section, we analyzed traces from two environments 
to explore the bounds of cooperative-caching performance. 
From this data, we saw that: 

1. The behavior of cooperative caching is characterized 
by two different regions of the hit rate vs. popula- 
tion curve. For smaller populations, hit rate increases 
rapidly with population; it is in this region that cooper- 
ative caching can be used effectively. However, these 
population sizes can be handled by a single proxy. 
Therefore, cooperative caching is only necessary to 
adapt to proxy assignments made for political or ge- 
ographical reasons. 

22 



2. For larger populations (beyond the knee of the popula- 
tion vs. hit rate curve), cooperative caching is unlikely 
to provide significant benefit. We demonstrate this us- 
ing our simultaneous traces of the Microsoft and uni- 
versity populations: a four-fold increase to a large uni- 
versity population via cooperative caching netted only 
a 2.7% increase in cacheable hit rate. 

3. Although there exist organizations with significant lo- 
cality, such as the Microsoft population, our clustering 
study shows that cooperative caching specialized to in- 
terest groups is unlikely to be effective. 

4. While some of these general trends have been ob- 
served before, the inevitable conclusion for coopera- 
tive caching has not been explicitly noted. 

Despite these negative conclusions, it is still possible that 
cooperative caching will perform better, either in steady- 
state or for different (possibly future) Web characteristics. 
In the domain where cooperative caching is effective, we 
also wish to understand which of the proposed cooperative- 
caching algorithms will be most beneficial. We explore these 
questions in the next two sections. 

4 An analytic model of Web accesses 

In Section 3 we considered the performance potential of 
cooperative caching using our trace data. In this section, 
we extend these results analytically to better understand the 
steady-state performance of cooperative caching for large 
client populations and to speculate on caching performance 
in light of future trends. We then examine the tradeoffs be- 
tween various cooperative-caching schemes in Section 5. 

4.1 Steady-state performance 

The results in Section 3 bound the performance of caching 
schemes in the short term - over a period of one week. How 
would these results change if the cooperative caching sys- 
tems were up and running for a month, a year, five years? In 
other words, how will cooperative caching schemes perform 
over the long run? In this section we examine the steady- 
state or limiting performance of caching schemes. 

Our model of steady-state performance assumes that a 
cache can store all cacheable documents in the Web and that 
there are no capacity misses in the workload 2. With this as- 
sumption, it is conceivable that in the long term the hit rate 
for cacheable documents would approach 100% since the 
relative importance of cold-cache effects, such as compul- 
sory misses, would diminish. For example, this would hap- 
pen if the Web were static, i.e., documents were not chang- 
ing and new documents were not being generated. In this 
case, all documents would eventually be requested, and no 

2We argue that the storage needed to do this is not intractable, 
and that capacity misses are therefore not an important aspect of 
the workload. Storage for the cacheable fraction of all documents 
currently estimated to be on the Web would require a large contem- 
porary disk array, such as the 9TB EMC Symmetrix 5930 storage 
system [15]. 

further misses would be incurred thereafter. On the other 
hand, if new documents are constantly being created and 
old documents are changing, the hit rate for cacheable doc- 
uments might remain low even over the long run. 

The ultimate performance of a cache will therefore de- 
pend upon the rate at which documents change compared to 
the rate at which documents are requested. If  the request 
rate dominates document rate of  change, then the cache will 
still achieve near optimal hit rates. One request will miss 
in the cache whenever a document changes, but all subse- 
quent requests to that document will be hits. However, if 
the request rate does not dominate document rate of change, 
then the cache will perform poorly. Repeated requests to a 
document will often find that the document has changed, so 
most of those requests will be misses. Since increasing the 
population served by a cache also increases the request rate, 
cooperative caching increases the likelihood that document 
request rate dominates document rate of change. 

Similarly, the creation of new documents in the Web in- 
troduces cold misses into the workload when those docu- 
ments are requested. As with document rate of change, if the 
Web grows slowly compared to the request rate, then caches 
will perform well: only a small fraction of requests will re- 
sult in cold misses. However, if the Web grows significantly 
faster than the request rate, then the cache will be dominated 
by cold misses and will perform poorly. 

We use our steady-state model to explore these effects 
in detail. We begin by introducing the model and then de- 
scribe its parameterization in Section 4.3. Section 4.4 shows 
performance results of the model. 

4.2 The model 

Our model is inspired by that of Breslau et al. [5]. We make 
the following assumptions about clients and documents. 

• There are N clients in the population. Clients are in- 
distinguishable and act independently of one another. 

• The total number of documents is n. For simplicity, we 
model documents as indivisible, rather than as com- 
pound, and assume that accesses to objects are inde- 
pendent. 

• The fraction of all requests that are for the i-th most 
popular document, or the "popularity" of this docu- 
ment, is denoted by Pi. We assume that documents 
follow a Zipf-like distribution [5], i.e., that Pi is pro- 
portional to 1/ i  '~ for some constant a.  The impor- 
tant characteristic of a Zipf-like distribution is that it 
is heavy-tailed - a significant fraction of the proba- 
bility mass is concentrated in the tail, which in this 
case means that a significant fraction of requests go 
to the relatively unpopular documents. As a increases, 
the distribution becomes less heavy-tailed, and a larger 
fraction of the probability mass is concentrated on the 
most popular documents. 

• The distribution of time between requests made by the 
client population is exponential with parameter AN, 
where A is the average client request rate. 
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• The distribution of time between changes to a docu- 
ment is exponential with parameter #, independent of 
document size and latency, but not independent of  pop- 
ularity. We use two separate document change dis- 
tributions, one for popular documents with mean #p 
and another for unpopular documents with mean/z~,. 
The number of popular documents is np. Document 
change can be used to model either expiration or ac- 
tual change. 

• The probability that a requested document is cacheable 
is Pc. 

• The average document size is E(S). Document size is 
independent of document popularity, latency, and rate 
of change. 

• The last-byte latency to the server that houses that doc- 
ument has average value E(L). Last-byte latency is in- 
dependent of  document popularity and document rate 
of change. 

We justify the independence assumptions we make by 
the fact that all the correlation coefficients (between each 
pair of document size, document popularity, first-byte la- 
tency, and document cacheability) computed from the UW 
trace are close to O. We have also found that cacheable ob- 
jects are more likely to have low latencies, making the model 
conservative with respect to reality. The data from the UW 
trace strongly suggests that the rate-of-change distribution 
is heavy-tailed. However, to make our model tractable to 
solve analytically, we assume that the rates of change for 
popular and unpopular documents are distributed exponen- 
tially. Since the steady-state performance of a proxy cache 
improves as document inter-modification times increase, this 
approximation underestimates cache performance and again 
makes it conservative. 

With these assumptions, we can compute a number of 
performance characteristics. In steady state, it is easily 
shown that for a single proxy cache serving a population of 
size N: 

• The steady state hit rate is 

HN : pcCN, 

where CN is the probability that a request is a hit given 
that it is cacheable. The steady-state cacheable hit rate 
to cacheable documents CN is 

CN : Z p i ,  AN Np~ 
l<i<n A Pi -t- #" 

Taking Pi proportional to 1/i s, a very close approxi- 
mation to this sum is given by 

j:l(1) 
where 

f l  1 C = - - d x .  
< x < n  x a  

The first integral can be evaluated exactly for a = 1 
and numerically for other values of a.  

• The expected last-byte latency to serve a request is 
given by 

latreq = (1 - HN)E(L) + HN * lathit, 

where lathit is the latency for a cache hit. 

• The average bandwidth savings per request due to 
proxy caching, measured in kilobytes not transferred, 
is denoted BN and is given by 

BN = HNE(S).  

• The expected amount of storage required in a proxy 
cache for a population of this size is nHNE(S) .  This 
is actually optimistic, as it assumes that only objects 
that are cacheable and have not expired are cached. 

The key differences between our model and that pre- 
sented by Breslau et al. are that: (1) we consider the steady- 
state behavior of caching systems rather than caching be- 
havior based on a finite request sequence, and (2) we incor- 
porate document rate of  change into the model rather than 
assuming that documents are static. Our goal in building the 
model also differs from the goals pursued by Breslau et al. 
They used their model to study proxy cache replacement al- 
gorithms; we use our model to understand the performance 
of large-scale, cooperative-caching schemes in terms of hit 
rate, latency, bandwidth savings, and storage consumed. 

We note that a number of the assumptions made here do 
not match some empirical measurements, and therefore the 
results of our model cannot be compared directly to the trace 
results shown in Section 3. For example: (1) our empirical 
results are based on a one-week trace, while our model ex- 
amines steady-state behavior, (2) the number of documents 
seen by the trace is significantly smaller than the number 
in the Web as a whole, and (3) the trace-based simulations 
did not expire documents from the cache and we cannot pre- 
cisely model the rate-of-change distribution seen in the trace. 

The goal of this section is not to exactly model empirical 
results. Rather, it is to examine at a high level the impact of 
changes to, or the sensitivity of, various workload parame- 
ters in light of future trends. 

4.3 Model parameters 

We parameterize the model using values computed from the 
UW trace. These values are summarized in Table 2. 

We estimate the number of objects in the Web, n, using 
results from a study by Lawrence et al. [25]. Based upon 
February 1999 data, they estimate that the Web has 800 mil- 
lion compound Web documents. We used an estimate of  3.2 
billion objects in the Web, since each compound document 
in the UW trace contained an average of four objects. 

We assume that the time to serve documents from a 
proxy cache latmt is 10ms. Although this may be an opti- 
mistic value, particularly when caches are under heavy load 
and requests experience queueing delays, increasing lathit 
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Parameter Value Parameter I Value 
0.8 

np 

A 

OL 

n 3.2 billion 
10.4 million 

Pc 0.6 
E(S) 7.7 KB 
E(L) 1.9 seconds 

590 reqs/day latmt 10 ms 
Slow Fast 

i| i l'14, ays #,, I l' minutes 
/z~, 1/186 days #u 1/85 days 

Mid Slow Mid Fast 
I #p [ 1/1 day #p 1/1 hour 

#u [ 1/186 days #~, 1/85 days 

Table 2. Default model parameters from the UW trace. 

Popular Unpopular 
Scenario Mean Median Mean Median 

Normal 14 < 1 186 85 
Always Change 3 < 1 129 23 
Never Change 27 < 1 763 180 

i Cacheable 5 < 1  168 6 5  
I Uncacheable < 1 < 1 22 < 1  

Table 3. Document rate of change (in days between 
changes) for three different policies (Normal, Always 
Change, and Never Change), and then broken down 
by Cacheable and Uncacheable documents using the 
Always Change policy. 

merely offsets the latency results by a similar amount until it 
reaches a second or more. 

Table 3 summarizes the rate-of-change values observed 
in the UW trace for three policies. We found that document 
rate of change is correlated with document popularity, so the 
table contains results separated into popular and unpopular 
documents. This finding is consistent with previous rate of 
change studies. For example, Douglis et al. also found that 
the popular pages changed more often than the less popu- 
lar pages [13]. We define popular documents as the most 
frequently requested documents that account for 40% of all 
requests. Due to the Zipf popularity distribution, the pop- 
ular documents comprise only 0.3% of all documents. We 
account for this in the model by using two separate rate- 
of-change distributions, one for popular documents (mean 
#p) and another for unpopular documents (mean/h,). In our 
model results, we use four parameterizations of these distri- 
butions. The "slow" parameterization uses the mean rates 
of change for popular and unpopular documents computed 
from the UW trace as the means/zp and #~, of the rate-of- 
change distributions in the model. The "fast" parameteriza- 
tion uses the median rates of change as computed from the 
UW trace as the means for the rate-of-change distributions 
in the model. And "mid slow" and "mid fast" represent in- 
termediary values for the rate-of-change parameters. 

Since our UW trace does not record the data transferred 
during a connection, we must rely on the "Last-Modified" 
HTTP header to detect document changes. However, this 
header is not always present in Web server responses. Other 
studies on rate of change, where the full document content 
was available, have determined that relying solely on HTTP 

header information has some pitfalls, the most common be- 
ing when the headers signal a change when none has oc- 
curred [13, 36]. Wills et al. [36] also quantify how often 
documents change when the "Last-Modified" field is miss- 
ing. The top three lines of Table 3 show results that differ 
only in how we treat requests to documents with incomplete 
header information (36% of the requests). For the "normal" 
results, we simply ignore those documents. For the "always 
change" results, we calculate an upper bound by assuming 
that those documents change between each access. For the 
"never change" results, we calculate a lower bound by as- 
suming that no document missing this header field changes. 

We also investigated whether the rate of change for 
cacheable documents was different than that of uncacheable 
documents. The "cacheable" and "uncacheable" lines in Ta- 
ble 3, generated using the "always change" policy, show 
that uncacheable documents change much more rapidly than 
cacheable documents. It is important to note that since 
our model is restricted to cacheable documents, the rate of 
change results for cacheable documents are more relevant as 
input parameters to the model. 

4.4 Performance of large scale proxy caching 

We begin by examining basic performance results from the 
model using parameters extracted from our trace data. We 
then consider the effects of possible future changes in the 
fundamental parameters of the Web. In particular, we ex- 
amine the impact on performance of (a) the rate of change 
of Web documents #, (b) the client request rate A and pop- 
ulation size N,  (c) the Zipf parameter a of the popularity 
distribution, and (d) the rate of growth of the Web, measured 
in the number of accessible documents n. 

4.4.1 Hit rate, latency, and bandwidth 

Figure 9 shows the steady-state hit rate for cacheable docu- 
ments CN as a function of the population size N,  graphed 
on a log scale. The figure shows four curves correspond- 
ing to four possible values for the rate of change parameters 
presented in Table 2. A key question to address is: given 
the client request rate, document rate of change, and docu- 
ment popularity distributions, how large a client population 
is needed to achieve a cache hit rate approaching Pc, the frac- 
tion of cacheable Web documents. 

All these curves can be viewed as consisting of three re- 
gions: (1) an initial region in which hit rates grow slowly, 
(2) a large middle region in which hit rates grow linearly 
(as population grows exponentially), and (3) a final region 
in which hit rates grow slowly again, ultimately converging 
to 100%. In the initial region, the request rate is too low to 
dominate the rate of  change for unpopular documents. As a 
result, the hit rate for unpopular documents remains close to 
zero and almost all of the hit rate improvement is accounted 
for by hits on popular documents. The transition to the mid- 
dle region marks the beginning of a significant increase in 
the hit rate to unpopular documents. The heavy-tailed nature 
of the popularity distribution implies that an exponential in- 
crease in request rate is needed to obtain a linear increase in 
the fraction of requests to unpopular documents that are hits, 
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Figure 9. Cacheable request hit rate as a function of 
client population (log scale). 
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Figure 10. Mean request latency as a function of client 
population. 

i.e., requests to documents that have been requested more 
recently than they have changed. The transition to the fi- 
nal region occurs when the hit rate for unpopular documents 
approaches 100%. Behavior in this region is once again ac- 
counted for by improvements in the hit rate for popular doc- 
uments. Here, the request rates are high enough to domi- 
nate those inter-document modification times that are much 
smaller than the mean of the exponential distribution. 

We see from Figure 9 that proxy cache hit rate is very 
sensitive to document rate-of-change parameters. The client 
population required to achieve 90% of the cacheable hit rate 
Pc is only 250,000 for the slowest parameters but nearly 20 
million for the fastest parameters. 

Finally, we would like to understand how hit rate trans- 
lates into actual performance improvement. Hit rate funda- 
mentally determines the improvement in object access la- 
tency and the reduction in network bandwidth consumed by 
transmitting Web objects. The effect on object access la- 
tency is shown in Figure 10. This figure graphs mean latency 
as a function of N,  assuming a single cooperative cache for 
the entire population that serves cache hits with an average 
latency of 10ms. The curves asymptote at (1 -pc)E(L), the 
mean latency of uncacheable documents; recall that pc=0.6 
and E(L)=I .9  seconds, so the curves asymptote at 0.76 sec- 
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Figure 11. Sensitivity of hit rate to the rate of change 
of popular and unpopular documents,  #p and #~,. The 
hit rates were calculated for a population of 250,000. 

onds. For the slower rates of change, most of the benefit 
is achieved at medium-sized populations: 95% of the maxi- 
mum benefit is achieved at a population of 500,000. For the 
fast rates of change, 68% of the maximum benefit is achieved 
at a population of 500,000, and it decreases thereafter. Since 
the impact on latency and bandwidth is directly a function 
of hit rate, the curves for the effect on bandwidth are iden- 
tical to those for latency. We therefore omit the graph of 
bandwidth as a function of population for brevity. 

4.4.2 Document rate of change 

Two key issues regarding document rate of change concern: 
(1) how sensitive the hit rate is to document change rate, and 
(2) which parameter has the greatest impact on hit rate - the 
rate of change of popular documents #p or unpopular docu- 
ments #u. Figure 11 shows the sensitivity of the proxy cache 
hit rate to the rate of change of popular and unpopular docu- 
ments for a population of 500,000 clients. The x-axis is the 
mean interval between changes to a document (the inverse of 
#) on a log scale, and the y-axis is the hit rate of  cacheable 
documents. The top curve shows the effect on hit rate of 
varying the mean rate of change of popular documents/zp 
from a very slow rate, viz., 1 change every 180 days (point 
A), to a very fast rate, viz., 1 change every minute (point B). 
For this curve, the rate of change of  unpopular documents #~, 
is held constant at the slow rate of 1 change every 180 days 
to minimize its impact. Similarly, the bottom curve shows 
the effect on hit rate of varying the mean rate of change of 
unpopular documents #u between the same extremes of slow 
(point A) and fast (point C) rates of change. For this curve, 
the rate of change of popular documents #p is held constant 
at the slow change rate. 

From Figure 11 we see that the proxy cache hit rate is 
very sensitive to the change rates of popular and unpopular 
documents. For popular documents, hit rate varies moder- 
ately when documents change faster than once a day. When 
popular documentS change slower than once a day, there is 
little impact on hit rate. In contrast, hit rate is sensitive to the 
rate of change of unpopular documents on an entirely differ- 
ent time scale. For unpopular documents, hit rate varies con- 
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siderably when documents change slower than once a day. 
Once unpopular documents change at least once a day, they 
are already changing faster than they are being requested• At 
this point, hit rate reaches a minimum and does not decrease, 
even at higher rates of change. Thus, for popular documents 
the issue is whether they change on the scale of minutes to 
hours; for unpopular documents it is whether they change on 
the scale of days to weeks to months. 

We also see from Figure 11 that the rate of change of 
unpopular documents #~, has a more significant impact on 
proxy cache hit rate than the rate of change of popular docu- 
ments pp. This behavior is a result of the dynamics between 
document popularity and rates of change. Requests are heav- 
ily skewed to popular documents; therefore, even with high 
change rates, the request rate to popular documents domi- 
nates. While each document change makes the next request 
to that document miss in the cache, the popularity of the 
document is such that it will have many requests to the doc- 
ument before it changes again, and these requests hit in the 
cache• However, the request rate to unpopular documents 
is so low that the change rate dominates. Even if unpopu- 
lar documents change at a moderate rate, requests to those 
documents always find out-of-date versions in the cache. 

Figure 12 shows results similar to Figure 11, except for a 
much larger population of 20 million users. This population 
corresponds to a hit rate of 90% for the fast rates of change• 
Comparing the figures, we see a decrease in the time scales 
at which hit rate is sensitive to rates of change• For pop- 
ular documents the time scale is now an hour or less, and 
for unpopular documents most of the variation in hit rate 
is between rates of change of 10 minutes to a month. At 
these very large population sizes, document request rates are 
significantly higher than with the smaller population in Fig- 
ure 11. For both popular and unpopular documents, these 
high request rates dominate even higher rates of change• 

4.4.3 Client request rate 

The population needed to achieve a given hit rate varies in- 
versely with the client request rate A. When A is very low, 
even large populations cannot dominate the object rate of 

change and therefore cannot keep the cache filled with up- 
to-date objects. On the other hand, when A is extremely 
large, even small populations can maintain a filled, up-to- 
date cache. Trends indicate that A is increasing significantly 
over time; the per client request rate in the UW trace is eight 
times that of the 1996 DEC trace [24]. Unfortunately, there 
is minimal current or historical data on document rate of 
change• The rates of change in the UW trace seem well 
within a factor of two of those presented in [ 13]. Based upon 
just these two points of reference, it does appear that A is 
growing much faster than #u- As a result, the populations at 
which large-scale caching systems experience diminishing 
returns will decrease over time. 

4.4.4 Document popularity and size of  the Web 

We also examined the sensitivity of the model to variations 
in the Zipf parameter a and the number of documents in 
the Web n. We do not have sufficient space to describe the 
results in detail, and so we briefly summarize them here. In- 
creasing a skews the distribution even further towards pop- 
ular documents• This greater skew towards popular doc- 
uments significantly increases hit rates for slower rates of 
change, but only slightly increases hit rates for faster rates 
of change• Increasing the number of  documents n simply 
shifts the curves for slow and fast rates of change to larger 
populations; it does not significantly change the shapes of 
the curves. This population shift is roughly in proportion to 
the increase in n: for example, for n=3.2 billion, the slow 
curve reaches a 90% hit rate at a population of 250,000; for 
n=32 billion, the slow curve reaches a 90% hit rate at a pop- 
ulation of 25 million; and for n=320 billion, the slow curve 
reaches a 90% hit rate at a population of 250 million. 

4.5 Summary 
In this section, we developed an analytic model and used 
it to examine the steady-state performance of cooperative- 
caching schemes. Our model extends the results of our trace 
to a wider range of parameter values, including document 
popularity and document rate of change. We show again that 
relatively small populations achieve most of the performance 
benefits of cooperative caching. 

5 Comparing cooperative caching schemes 

The previous section explored the performance of large Web 
proxy-caching systems. This section examines the question 
of how these systems are designed and organized. Proxy 
caching starts at the level of individual organizations, small 
and large• To achieve the performance of caching systems 
with large populations, some form of cooperative caching 
among these organizational proxies will have to be used. 
In this section, we extend the calculations from the model 
to understand the differences in performance between vari- 
ous cooperative-caching systems as a function of scale• We 
compare three basic schemes: a hierarchical caching system 
inspired by Squid [32]; a flat hash-based caching system in- 
spired by [21, 35]; and a directory-based scheme inspired 
by Summary Cache [16]. We evaluate these schemes at the 

27 



Request 
Arrival 

Rate 

Average 
Request 
Latency 

Storage 
Per Proxy 

Hierarch ica l  

ANi(1 - H N I + I  ) 

to level i 

(HN~+I = O) 

(1 - HN,)E(L) 
+ ~ l < i < k  Li(HNI - Hgi+l) 

~-~,l <i<k nd'-l HN~ E( S) /m 

H a s h - b a s e d  

AN/m 

(1 - HN)E(L) + HNLo 

nHNE(S)/m 

D i r e c t o r y - b a s e d  

AN/m 
AN + - ~ ( 1  -- H_.~)HN(I__.~) 
(2nd term - requests 
from other proxies) 

(1 - HN)E(L) 
+(1 - H~)HN(I__~)2Lc 

+HaLl 
m 

nH_~ E(S) 
(lower bound) 

Table 4. Cooperative caching performance parameters. 

scale of a City, a State, and a large region (the West Coast of 
the U.S.). Our results will show why there is little motivation 
to scale to a region larger than a medium-sized city. 

The hierarchical caching system assumes a hierarchy of 
k levels of caches, with a fanout of d at each level, where the 
bottom-level caches serve as proxy caches for populations of 
size Nk. A client's request is forwarded up the hierarchy un- 
til a cache hit occurs; if none occurs, the request is forwarded 
to the server. A copy of the requested object is then stored in 
all caches along the request path. In what follows, we will 
assume that the top-level cache serves an overall population 
of size N1 = N, each second-level cache serves a disjoint 
subpopulation of size Ne, and on down to a set of k-th-level 
caches, each serving subpopulations of size Nk. (Concisely, 
Ni -- N/d i-1 .) For simplicity, we assume fixed latencies 
between the caches in the hierarchy, where Li is the latency 
between level i + 1 and level i caches. 

The hash-based caching system assumes a total of m 
caches cumulatively serving a population of size N. (We 
will assume m = d k from the hierarchical scheme.) We as- 
sume a fixed average latency of Lc to transmit data from a 
random cache to a client in the population, and a hash func- 
tion that randomly maps URLs to one of the m caches uni- 
formly. Upon a request by a client, the client hashes the 
URL and forwards the request to the corresponding cache 
C. If the cache stores the document, it is forwarded to the 
client. Otherwise, the request is forwarded to the server, and 
a copy is returned to the client and to the cache C. The 
advantages of such a scheme are: (1) that load is balanced 
across the proxy caches, and (2) only one copy of each docu- 
ment is stored in the entire cooperative caching system. Such 
schemes have been proposed primarily for use in a local-area 
setting, since for large populations L~ may be sizeable. 

Finally, in the directory-based system, we assume a total 
of m caches cumulatively serving a population of size N.  In 
this system, the population is partitioned into subpopulations 
of size N/m, and each subpopulation is served by a single 
proxy cache. Each proxy cache maintains a directory that 
summarizes the set of documents stored at each of the other 
proxy caches in the system. When a client issues a request 
for a document, it is forwarded to its proxy. If the proxy 
has the object, it returns it directly to the client. Otherwise, 
the proxy cache checks its directory to see if another proxy 
cache in the system stores a copy of the document. If so, the 
request is sent to a random cache storing a copy, which then 
returns a copy of the document to the proxy cache and to the 

requesting client. We assume a latency of Lt to transmit data 
from a proxy cache to a client it serves, and a latency of Lc 
between proxy caches in the system. 

To maintain the directories, each proxy cache period- 
ically (every t time units) sends out an update about the 
contents of its cache. In particular, it multicasts the set of 
changes to its document set since the last request. We ignore 
the overhead of these messages in our subsequent analysis, 
as well as the extra misses caused by directory entries that 
become stale between updates. 

These descriptions of cooperative caching systems are 
stated in general terms that emphasize the structure and oper- 
ation of the systems, glossing over potential implementation 
details. For example, the description of the hierarchical sys- 
tem is in terms of multiple levels of caches. In practice, these 
caches may be special caches maintained at ISPs, or exist- 
ing organizational caches that serve the role of first, second, 
and third level caches for different portions of the Web name 
space, as with [33]. The issue of whether it is better to use 
separate dedicated caches or to overload existing individual 
caches with multiple responsibilities is a detailed design is- 
sue that is beyond the scope of this paper. 

Table 4 summarizes the performance of the three coop- 
erative caching schemes, based on the model. Recall from 
Section 4 that E(L) is the average latency to a server and 
E(S) is the average document size. We compare the perfor- 
mance of these schemes at three different scales: 

1. A medium-sized City (N=0.5 million users) 

2. A small State (N=5 million users) 

3. The west coast of the U.S. (N=50 million users) 

From the UW trace, the average client issues just un- 
der 600 requests. Based on this, we assume that there are 
50,000 clients behind each lowest-level proxy cache, which 
results in an average request rate of about 350 requests per 
second. This request rate is well within the load a single host 
can handle as a proxy cache (e.g., [12] reports 500 requests 
per second, and various single host proxies from the Web 
Caching Bake-off report throughputs ranging from 96-690 
requests per second [31]). Based on the populations at dif- 
ferent scales, this results in a total of m = 10 organizational 
proxy caches for the City, m = 100 caches for the State and 
m = 1000 caches for the west coast. For the hierarchical 
scheme, we assume that d -- 10, giving us a two-level hier- 
archy for the city (a single top-level proxy cache on top of 
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Hierarchical Hashed Directory 
Arrival r l  = 150M/day 30M/day 37M/day 
Rate r2 = 30M/day 
Latency 0.86 secs 0.88 secs 0.89 secs 
Storage 11 TB 1.5 TB 9.5 TB 

Table 5. City cooperative caching performance. 

Hierarchical '[ Hashed Directory 
Arrival rl  = 1.37B/day 29.5M/day 37.7M/day 
Rate r2 = 147M/day 

r3 = 29.5M/day 
Latency 0.79 secs 0.83 secs 0.85 secs 
Storage 11 TB 150 G B 9.5 TB 

Table 6. State cooperative caching performance. 

the 10 organizational caches), a three-level hierarchy for the 
state, and a four-level hierarchy for the west coast. 

We use the values in Table 2 from the UW trace to pa- 
rameterize the model. For rates of change, we used the "mid 
slow" values, where/zp is one change per day and #~, is one 
change per 186 days. These rates of change most closely 
matched the performance observed in the UW and Microsoft 
traces. We further assume that the average last-byte latency 
to transfer a document: (1) from an organizational proxy 
cache to a client is 10ms, (2) between two random caches in 
the city is 50ms, (3) between two random caches in the state 
is lOOms, (4) and between two random caches on the west 
coast is 500ms. We derived these numbers by multiplying a 
basic latency by the number of round trips required to down- 
load an average document. For the basic latency, we used 
ping latencies from the University of Washington to popu- 
lar Web sites whose distances correspond to the three levels 
of the cache hierarchy. Since the average document size in 
our trace is 7.7KB, we estimate that five round trips between 
the sender and the receiver of the document are required to 
complete the transfer (due to TCP/IP protocol overhead). 

Because these latencies are based upon a simple model 
of the network (e.g., persistent connections might reduce the 
number of round trips if the connection has been ramped up 
to a high congestion window) and pings from a single net- 
work source, we also evaluated the sensitivity of our model 
results to these parameters. We did this evaluation indirectly 
by varying the average latency for downloading documents 
from servers, thereby changing the ratio of cache latency to 
server latency. In addition to the trace value of E(L)=I .9  
seconds, we also evaluated the schemes using average doc- 
uments latencies ranging from 250ms to I0 seconds. In 
each case, their relative performance was qualitatively simi- 
lar when E(L)=I .9  seconds. 

Tables 5, 6 and 7 present model results for the three 
cooperative-caching schemes using our parameterizations. 
From these tables we can draw a number of conclusions. 
First, we see that the bulk of the achievable benefit, in terms 
of latency savings, is already achieved at the scale of city- 
level cooperative caching. Indeed, the minimum possible av- 
erage latency we could hope for is (1 - pc)E(L), which for 
our parameters is 0.76 seconds. All three schemes already 
achieve a value close to this in the city. Second, broadening 

Arrival 
Rate 

Latency 

Hierarchical Hashed Directory 
r] = 13B/day 

r2 = 1.37B/day 
r3 = 147M/day 
r4 = 29.5M/day 

0.78 secs 

29.5M/day 

1 .1s~s  

37.9M/day 

1.13 secs 
Storage 11 TB 15 GB 9.5 TB 

Table 7. West Coast cooperative caching performance. 

the region to increase population also increases inter-proxy 
latencies. As a result, a fiat cooperative-caching scheme is 
no longer effective. For the west coast, the average latency 
between proxy caches is sufficiently large that the perfor- 
mance of the flat hash-based and directory-based schemes is 
worse, in terms of document latency, than their performance 
at the level of  the state, despite the ten-fold increase in popu- 
lation. Obviously, this problem could be solved by designing 
hierarchical variants of these two schemes. 

In terms of request rate, we see that for all schemes the 
lowest-level proxy caches have similar request rates (though 
the directory scheme has a slightly higher value), and are 
dominated by the requests from clients served directly by 
that proxy. However, even at the scale of city-wide cooper- 
ative caching, the top-level cache in the hierarchical scheme 
is a bottleneck. Since request rate will be directly correlated 
with queueing, the average latency that will be observed 
in the hierarchical scheme will be significantly higher than 
shown here, particularly as we scale up to the state or west 
coast level. Therefore, if scaling up to these levels is desir- 
able (which is itself a questionable proposition at best), the 
load at the higher levels of the hierarchy must be distributed 
across multiple proxy caches. There are a number of fairly 
obvious and natural ways to do this. Finally, we see that the 
hash-based scheme has the advantages that each document 
is stored only in one proxy cache and the load is balanced 
across the caches. 

In summary, all three schemes perform well in the region 
where cooperative caching is advantageous (e.g., at the level 
of a medium-sized city). Since documents are stored only 
in one cache, a hash-based scheme achieves the best storage 
efficiency. In a broader area (e.g., the size of the west coast), 
the increased latency of inter-proxy communication eclipses 
the very limited benefits of increased population. 

6 Conclusions 

This paper studied cooperative proxy caching in local- and 
wide-area environments. We used a combination of trace- 
based analysis and analytic modelling to evaluate coopera- 
tive caching, and proxy caching in general, at a wide range of 
population sizes, document characteristics, and access pat- 
terns. At a high level, our results show that: 

1. In the absence of significant changes in client behav- 
ior, there is little point in continuing to expend ef- 
fort on the design and evaluation of highly scalable, 
cooperative-caching schemes. The scale at which co- 
operative caching makes sense (viz., up to the level of 
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a medium-sized city) is sufficiently small that reason- 
able schemes will achieve most of the benefit. 

2. The largest benefit for cooperative caching is achieved 
for relatively small populations. This is demonstrated 
by our analysis of cooperation among small organiza- 
tions within the university environment. Our simul- 
taneous traces of UW and Microsoft confirmed the 
marginal benefit of cooperative caching among orga- 
nizations with populations of 20K clients or more. 
Scaling beyond such populations provides only minor 
improvement and therefore makes sense only in very 
high-bandwidth, low-latency environments. 

3. Performance at the population level at which coop- 
erative caching works effectively is basically lim- 
ited by document cacheability. Therefore, increasing 
cacheability of documents is the main challenge for re- 
search aimed at improving Web cache behavior. 

4. Cluster-based analysis of client access patterns indi- 
cates that cooperative-caching organizations based on 
mutual interest offer no obvious advantages over ran- 
domly assigned or organization-based groupings. 

Fundamentally, the usefulness of cooperative Web proxy 
caching depends upon the scale at which it is being applied. 
From our trace data of users at the University of Washington 
and Microsoft Corporation, cooperative Web proxy caching 
is an effective architecture for small individual caches that 
together comprise user populations in the tens of thousands. 
At such small scales, any reasonable cooperative caching 
scheme will serve. But cooperative caching is not required 
for user populations of this size. If it is administratively 
and politically feasible, a single proxy cache can provide the 
same benefits with fewer resources and less overhead. 

Whether or not they use cooperative caching locally, 
large organizations should use proxy caching for their user 
populations. A key issue is whether these large organiza- 
tional caches benefit from cooperating. Experiments with 
our steady-state model indicate that cooperation among the 
organizational caches within a medium to large city will still 
provide benefit, although an incremental benefit, over co- 
operative caching at small scales. Assuming that bandwidth 
within a city is plentiful and latencies are small, the overhead 
of cooperative caching would be low and therefore worth the 
secondary benefits that such caching provides. In principle, 
the organizational caches within a city can use a hash-based 
scheme to maximize storage efficiency. In practice, however, 
given the cheap cost of disks, using a hash-based scheme to 
spread load is more important than storage efficiency. Ex- 
trapolating to yet larger scales, such as the state level and 
even the west coast of the U.S., our model results indicate 
that cooperative caching among cities would provide very 
limited additional benefit, particularly given the increased 
latencies among caches. 

Finally, we note that our results on cooperative caching 
are based upon Web workload behavior currently observed. 
Fundamental shifts in Web workloads might change these re- 
suits. For example, the workloads we have examined consist 
primarily of static documents. But we have also observed 

a growing presence in Web workloads of streaming multi- 
media traffic [37], and streaming multimedia objects have 
different characteristics than static objects. Their average 
size is orders of magnitude larger, so cooperative caching 
for storage efficiency becomes more appealing. Further- 
more, last-byte latency is not a critical performance met- 
ric for streaming data. Instead, reducing jitter and mak- 
ing more effective use of the network become more impor- 
tant. Lastly, given the sizes of streaming objects, and the 
relatively long period of time over which they are trans- 
ferred over the network, transport optimizations like mul- 
ticast might prove more effective. 
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