
On the scale and performance
of cooperative Web proxy caching

Alec Wolman, Geoffrey M. Voelker, Nitin Sharma,
Neal Cardwell, Anna Karlin, and Henry M. Levy

Department of Computer Science and Engineering
University of Washington

{ wolman, voelker, nitin, cardwell, karlin, levy} @cs.washington.edu

Abstract

While algorithms for cooperative proxy caching have been
widely studied, little is understood about cooperative-
caching performance in the large-scale World Wide Web en-
vironment. This paper uses both trace-based analysis and
analytic modelling to show the potential advantages and
drawbacks of inter-proxy cooperation. With our traces, we
evaluate quantitatively the performance-improvement po-
tential of cooperation between 200 small-organization prox-
ies within a university environment, and between two large-
organization proxies handling 23,000 and 60, 000 clients, re-
spectively. With our model we extend beyond these popula-
tions to project cooperative caching behavior in regions with
millions of clients. Overall, we demonstrate that cooperative
caching has performance benefits only within limited popu-
lation bounds. We also use our model to examine the impli-
cations of future trends in Web-access behavior and traffic.

1 Introduction

Cooperative caching - the sharing and coordination of
cache state among multiple communicating caches - has
been shown to improve the performance of file and virtual-
memory systems in a high-speed, local-area network envi-
ronment [3, 17]. For example, when a file-page miss occurs,
the local file cache may transfer the page from the file cache
on another node. Cooperative caching works in this environ-
ment because network transfer time is much smaller than the
disk access time required to service a miss.

Internet proxy caching has become a commonplace ap-
proach for improving the performance of Web browsers.
Typically, the proxy sits in front of an entire company or
organization. By caching requests for a group of users, a
proxy can quickly return documents previously accessed by

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP-17 12/1999 Kiawah Island, SC
(~)1999 ACM 1-58113-140-2/99/0012... $5.00

other clients. Ultimately, though, the hit rate of the proxy
is a function of the size of the population it manages - a
size often dictated by political, organizational, or geographic
considerations. An obvious question, then, is whether mul-
tiple proxies should cooperate with each other in order to
increase total client population, improve hit ratios, and re-
duce document-access latency. Whether such cooperative
proxy caching is a useful architecture for improving perfor-
mance depends on a number of factors. These include the
sharing patterns of documents across organizations, the ratio
of inter-proxy communication time to server fetch time, and
the scale at which cooperation is undertaken.

Several cooperative-caching protocols have been pro-
posed [9, 16, 28, 30, 33]; however, few studies have exam-
ined cooperative Web caching from a systemic viewpoint.
As a result, we know neither the environments in which co-
operative caching :is useful (if any) nor its potential perfor-
mance benefits. Answering such questions has been difficult
in the past, because studying proxy cooperation requires si-
multaneous traces from multiple proxies.

In this paper, we take a two-pronged approach to explor-
ing the limits and potentials of cooperative proxy caching.
As the first approach, we collect and analyze traces from
two environments: the University of Washington and the Mi-
crosoft Corporation. As a key component of our university
trace, we identify each client in terms of its membership in
one of about 200 university departments or programs. This
gives us the equivalent of a simultaneous trace of 200 di-
verse, independent organizations, permitting us to analyze
document sharing among those organizations and to measure
the potential benefits of cooperation among organization-
based proxies. We examine latency and bandwidth benefits
of proxy caching for this data, as well. We then use the Mi-
crosoft trace of employee traffic to the Internet to explore the
potential of cooperation between larger organizations. To
do this, we analyze traces from Microsoft and the university
that we collected over the same time period and processed
with the same anonymization function. This permits a direct
computation of the degree of document sharing, and hence
the benefit of sharing, between two proxies each handling
tens of thousands of clients.

As the second approach, we develop an analytic model
of Web behavior that extends beyond the limits of our trace
results. The model permits us to examine the impact of

16

larger population sizes, to explore the tradeoffs among var-
ious cooperative-caching schemes, and to speculate on the
performance implications of future trends.

Our results show the benefits of cooperative caching
among collections of small organizations. However, we
show that cooperative caching is unlikely to have signifi-
cant benefits for larger organizations or populations. That is,
with current sharing patterns, there is little point in designing
highly scalable cooperative-caching schemes; all reasonable
schemes will have similar performance in the low-end pop-
ulation range where cooperative caching works. Thus, the
crucial problem that must be solved to improve Web perfor-
mance is how to increase document cacheability.

The paper is organized as follows. The next section ex-
amines previous work and its relationship to our study. Sec-
tion 3 describes our traces and presents and analyzes data
from the traces. Section 4 develops an analytic model of
steady-state Web proxy caching, and uses the model to study
the performance of large-scale proxy caches. Section 5 then
uses the model to compare cooperative caching schemes,
and Section 6 summarizes and concludes.

2 Related work

Web tracing and caching are highly active research areas.
Recent studies of Web traffic include analyses of Web ac-
cess traces from the perspective of browsers [11, 26], prox-
ies [2, 5, 6, 7, 10, 13, 14, 18, 20, 23, 30], and servers [1,
4, 29]. Earlier tracing studies were limited in request rate,
number of requests, and diversity of population. The most
recent tracing studies have been larger and more diverse.
In addition to static analysis, some studies have also used
trace-driven cache simulation to characterize the locality and
sharing properties of very large traces [2, 6, 14, 18, 20, 23]
and to study the effects of cookies, aborted connections,
and persistent connections on the performance of proxy
caching [6, 18].

Researchers have studied the temporal locality of Web
proxy traces and examined how hit-ratio depends, asymp-
totically, on cache size and the number of requests. Sev-
eral interesting findings have been identified. First, it has
been well-documented that, for most traces, the relative fre-
quency with which Web pages are requested follows a Zipf-
like distribution, where the number of requests to the i th

most popular document is proportional to 1 / i '~ for some
constant a [2, 5, 8, 11, 19, 24]. Second, for infinite-sized
caches, it has been shown empirically and analytically that
the hit ratio for a Web proxy grows logarithmically with the
client population of the proxy and the number of requests
seen by the proxy [5, 8, 14, 20, 24].

There has also been extensive work on cooperative Web
caching as a technique to reduce access latency and band-
width consumption. Cooperative Web caching proposals in-
clude hierarchical schemes like Harvest and Squid [9, 32],
hash-based schemes [21, 35], directory-based schemes [16,
27, 33] and multicast-based schemes [28, 34]. Although
each of these research efforts included a performance evalu-
ation of the protocols proposed and a discussion of algorithm
scalability, only [22] presents empirical evaluations of coop-

eration for small populations, and none present empirical or
analytical evaluations of the effectiveness of their schemes
for the large client populations found in a wide-area setting.

Using client traces, Krishnan et al. studied the utility
of cooperation among three Bell Labs proxies with a small
user population [22]. They concluded that cooperative Web
caching can be useful, but that a cache manager was neces-
sary to dynamically determine when to cooperate, because
of the extra server load imposed by cooperation.

This paper expands on these previous research efforts.
We use trace-based analysis to quantify the potential advan-
tages and drawbacks of inter-proxy cooperation for small-
and medium-sized organizations. We use analytic modelling
to examine cooperative-caching performance in wider-area
environments. Our model is inspired by the model of Bres-
lau et al. [5]. We have augmented their assumptions with a
model- of document rate of change, client request rate, and
a small number of other parameters that allow us to study
the steady-state behavior of cooperative-caching schemes as
a function of the characteristics of the population they serve.

3 Web document sharing and proxy caching

This section poses and answers a number of questions about
the potential of cooperative proxy caching. Before consider-
ing specific caching algorithms, we will explore the bounds
of cooperative-caching performance. Key questions include:

1. What is the best performance one could achieve with
"perfect" cooperative caching?

2. For what range of client populations can cooperative
caching work effectively?

3. Does the way in which clients are assigned to caches
matter?

4. What cache hit rates are necessary to achieve worth-
while decreases in document access latency?

To answer these questions quantitatively, we have col-
lected and analyzed Web access data from two environ-
ments: (1) the University of Washington (UW), consisting
of about 50,000 students, faculty, and staff, and (2) the Mi-
crosoft Corporation (MS), consisting of about 40,000 em-
ployees. Most significantly, the two traces were collected
simultaneously and anonymized in the same way, allow-
ing direct comparison of trace records, including URLs and
server addresses. We use the UW trace as a way to analyze
document sharing by 200 small, independent organizations
within a diverse university; we use the UW and Microsoft
traces together as a way to analyze document sharing across
two large organizations. In both environments, we exam-
ine the potential benefits of proxy cache coordination from
the perspective of the clients and the network; in this study,
we do not investigate the effects of cooperative caching on
server load in general or under hot spot conditions.

The following section presents results derived from these
traces. In Section 4, we present an analytical model that goes
beyond the limits of the trace to much larger populations.

17

Parameter UW Microsoft
HTTP Requests 82.8 million 107ffmillion
HTTP Objects 18.4 million 15.3 million
Total Request Bytes 677 GB (N/A)
Average Requests/Sec 137 199
Clients 22,984 60,233
Servers 244,211 360,586
Duration 7 days 6 day's 6 hours

Table 1. Overall trace statistics.

3.1 Trace collection and characteristics

While several client traces exist in the public domain [11, 13,
14, 20, 26], most are several years old, and the information
they contain is inadequate for our analysis. We therefore de-
signed and implemented custom trace software and installed
it on a computer connected to the outgoing switches through
which our university's Internet traffic flows. Few proxies are
deployed in our university, so we are able to see most of
the Web client traffic generated from inside the university at
the border. The traces are anonymized, but the anonymiza-
tion preserves certain key aspects of the data that we require.
In particular, we anonymize client IP addresses, but we first
classify the client based on its "organizational" membership.
This allows us to identify requests from different academic
and administrative entities within the university, and classify
each entity as a unique organization. We describe the use of
this information later in this section.

We have been collecting university traces since October
1998; the trace used in this section was collected from May
7th through May 14th, 1999 and therefore shows very recent
access characteristics. Table 1 presents the high-level details
of this trace. As the table shows, we saw about 83 million
requests by 23,000 clients to 244,000 servers over the seven-
day period in the UW trace. Using this data, we can deter-
mine upper bounds on the performance of any cooperative
caching algorithm. This tells us whether proxy cooperation
is worthwhile even in the best case in our environment.

We also processed traces collected by the proxies han-
dling all outgoing traffic from Microsoft Corporation. These
traces were collected on the same days that we collected our
UW trace. Our software anonymizes both traces using the
same functions, so that URLs and server IP addresses in
them can be directly compared. Table 1 shows that in the
May 7 to May 14th, 1990 period, we saw about 108 mil-
lion requests by 60,000 clients to 360,000 servers in the Mi-
crosoft trace.

3.2 Simulation methodology

The results presented in this section are based on Web cache
simulations using our traces as input. This section discusses
the methodology used for the experiments we performed.

We make assumptions in our simulator that a real cache
would not make, and therefore do not model reality exactly.
However, our goal is to investigate behavior, not to exactly
reproduce hit rates, and we believe that our assumptions
do not change our conclusions about cache behavior. The
caches we simulate are infinite-sized and do not model ex-

pirations. As a result, they are somewhat optimistic. Real
caches will incur misses due to capacity limitations that we
do not model. However, capacity misses are rarely the bot-
tleneck for Web caches. For example, only three percent of
the requests to the Microsoft Web proxies from which we
gathered our traces missed due to the finite capacity of the
proxies (which have 9GB of RAM and 180GB of disk ca-
pacity). Real caches will also expire some objects that our
simulations keep alive in the cache.

At the same time, our simulation experiments are conser-
vative, because they include compulsory (cold start) misses.
We minimize this effect by simulating traces over long peri-
ods of time. We also exclude the effect of compulsory misses
using our steady-state model in Section 4.

We simulate two kinds of Web caches, a "practical"
cache and an "ideal" cache. A practical cache closely models
the cacheability of documents according to the algorithms in
the Squid V2 implementation [32]. Our cacheability pred-
icate accounts for HTTP 1.I cache control headers, cook-
ies, object names with suffixes naming dynamic objects, no-
cache pragmas, uncacheable methods and response codes,
and headers with Authorization and Vary fields. We re-
ported the detailed breakdown of document cacheability in
our traces in an earlier paper [37].

An ideal cache treats all documents as cacheable. It is
well known that some Web objects, such as images used in
advertisements, are marked uncacheable even though their
contents do not change and could be cached. Future im-
provements to Web protocols and cache implementations
can potentially be more aggressive and cache those objects
that practical proxies cannot currently cache. Since we can-
not anticipate all future improvements and implement them
in our simulator, we instead use an ideal cache to report the
upper bound that such improvements can hope to achieve on
our workloads.

Many of the experiments examine cache performance as
a function of client population. Because each UW modem
is reused by many people, using a modem IP address to rep-
resent a client would be inaccurate. As a result, we exclude
modem traffic in our analyses and focus on LAN users.

3.3 The impact of population size

In a cooperative-caching scheme, a proxy forwards a miss-
ing request to other proxies to determine if: (1) another
proxy holds the requested document, and (2) that document
can be returned faster than a request to the server. Whether
such cooperation is worthwhile will depend on the num-
ber of proxies involved, their distances (inter-proxy commu-
nication latencies), their utilizations, the client populations
served, and the complexity of the protocols used.

The result of Cooperative proxy caching is simply to in-
crease the effective client population. That is, at best, a col-
lection of cooperating caches will achieve the hit rate of a
single proxy acting over the combined population of all the
proxies. In reality, the performance will be less than perfect,
because proxies will not have perfect knowledge and will
pay the overheads of inter-proxy communication latency.
Examining a single, top-level proxy thus gives us an upper

18

1
80
70
60
50

. ~

"1" 40-

~30-
g 20-

10-

0
0

0 0 <

~ ~ o..O. ~ - . - : ~ - : : : : . ' : . ' : 6 : : : ~ . . - • <

"~" ~ Ideal (UW)
--~-- Cacheable (UW)

Ideal (MS)
--~-- Cacheable (MS)

. . . . I I I I I I

5000 10000 15000 20000 25000 30000
Population

Figure 1. Proxy cache request hit rate as a funct ion of
cl ient population.

bound on cooperative-caching performance.
Figure 1 graphs hit rate vs. client population size for our

traces, l The dark black lines in this graph show the behav-
ior of the university population. The dotted black line shows
the "cacheable hit rate," which corresponds to the hit rate
from a practical cache that considers the cacheability char-
acteristics of the documents. Both the shapes of the curves
and the cacheable hit rates are roughly consistent with previ-
ous proxy cache studies of client traces: [20, 23] both report
hit rates above 50% (but disregard cookies), [14] reports hit
rates of 40--45%, and [6] reports hit rates of 35% (but exag-
gerates the effects of cookies, which can often be cached in
HTTP 1.1).

The solid black line in Figure 1 shows the "ideal hit
rate" of an ideal cache for the UW trace, one that would
be achievable tf all shared documents were cacheable. In
the future, improvements to Web protocols may move the
cacheable line closer to the ideal line. On the other hand,
future changes in document characteristics may move the
cacheable line in either direction. We explore this issue fur-
ther in Section 4.

The grey lines in Figure 1 show the behavior of the Mi-
crosoft population. It is interesting to note that the ideal
curve asymptote is higher by about 13% than that of the
university environment, an indication that document sharing
within Microsoft is much higher than within the university.
This suggests, not surprisingly, that the Microsoft population
is much more homogeneous in its Web-access behavior than
the university population. However, we also see that the Mi-
crosoft cacheable curve almost overlies the UW cacheable
curve. This is a direct reflection of the different distributions
of requests to cacheable documents in the traces; 60% of re-
quests in the UW trace go to cacheable documents, but only
51% of requests in the Microsoft trace do so. As a result,
even though there is more sharing among Microsoft users,
document cacheability currently prevents a Microsoft proxy
cache from achieving a hit rate that is any better than a UW

1 In this graph and the others that follow, the clients for a given
population size are randomly selected out of the pool of clients seen
in our traces. Unless otherwise specified, each point on the graphs
shown is the mean of four independent random trials, and error bars
show the standard deviation across these trials.

Mean No Cache
---o-- Mean Cacheable
- -o- Mean Ideal

Median No Cache
---o-- Median Cacheable

1500 "'~---*--
,,000" - - §__ " ~':'_"~ ~* -.''0

0 500
0 ~ 0

0 j . ~ . ~ ~ ~ ~ , . . .

0 5000 10000 15000 20000
Population

Figure 2. Mean and median request latency as a func-
tion of cl ient populat ion for the UW trace. The error
bars on the median curves are the min and max medi-
ans across the trials.

proxy cache.
From this simple figure, we can draw several key con-

clusions about cooperative caching. The graphs have a sharp
knee at about 2500 clients. The steep increase in hit rate be-
low that knee implies that a large potential benefit (hit rate
increase) could exist from cooperative caching for multiple
proxies with small client populations. For example, given
10 proxies, each handling a population of a few hundred
clients, cooperative caching has the potential to significantly
improve the hit ratio seen by the clients of those proxies.
The improvement occurs by increasing the total population
of each proxy from 200 to 2000 clients.

It is important to note that the total number of clients
(below the knee) that can benefit from cooperative caching
couM easily be handled by a single proxy cache for our
traces and user populations. Often this will not be possible,
however, because decisions of proxy placement are based on
political or geographical factors, such as company organiza-
tion, location, and so on. While one organization may not
trust another to proxy all of its requests, it may be willing to
cooperate with other proxies for performance reasons.

Figure 1 also shows that hit rate increases very slowly
with client population once past the knee of the curve. It
is therefore not clear whether cooperative caching is benefi-
cial in this region, for proxies whose populations are already
above a few thousand clients. We will explore this question
in more detail below and in Section 4.

3.4 Hit rate vs. latency and bandwidth
While many caching studies focus on hit rate, in the Web en-
vironment it is ultimately latency, not hit rate, that is crucial
to clients. From the perspective of Internet service providers,
hit rate translates into bandwidth savings over costly Internet
links. These bandwidth savings can also reduce wide-area
network congestion, potentially improving the performance
of the Internet as a whole.

19

60-

50

"-" 40

n- 3 0
o ~
-e

2 0 -

lO:

. . - - . - -o

. 0

° ° o - ° ' °
'Or 0

- - - o - - Ideal

---<>-- Cacheable

0 I I I I '

0 5000 10000 15000 20000

Population

Figure 3. Proxy cache byte hit rate as a function of
client population for the UW trace.

Figure 2 shows document latency in our university trace
as a function of the number of clients using a proxy cache.
The top three lines, from top to bottom, show mean last-byte
latency: (1) without a proxy cache (i.e., as extracted from
the trace), (2) with a proxy cache respecting cacheability,
and (3) with an ideal proxy cache. The bottom three lines
show median last-byte latency under the same three condi-
tions. Note that, unlike other curves, the error bars on the
median lines correspond to the minimum and maximum me-
dian values among the trials at each population size. The
three mean lines level out quickly, while the medians are
essentially fiat. This implies that caching will have little im-
pact on mean and median latency beyond very small client
populations. The mean trace curve is not constant, because
each point represents requests from different client popula-
tion samples, and mean latency will vary from one sample
to another.

In Figure 2, the mean latency is much higher than the
median due to many high-latency documents. Can coop-
erative caching reduce the percentage of these high-latency
documents? Calculating the percentage of documents with
a last-byte latency below two seconds, though, implies that
this is not the case. When graphed as a function of popu-
lation, this percentage is effectively a horizontal line for all
three caching policies described above with very little .differ-
ence among them. The ideal line is the highest (90%), and
no cache is the lowest (82%). The insensitivity to popula-
tion and closeness of these values demonstrate that neither
cacheability nor increasing population will significantly re-
duce the number of high-latency documents. Our trace anal-
ysis indicates that these documents are slow due to document
size, network latency (e.g., from congestion, low-bandwidth
links, long distances), or both. Also, as described below,
shared documents tend to be smaller than non-shared ones,
biasing misses towards larger documents that consequently
take longer to download.

A final dimension is bandwidth. Figure 3 shows the byte
hit rate as a function of client population for the university
trace. Once again, we see a knee in the curve at around 2500
clients. Comparing these results to the hit rates given in Fig-
ure 1, we can conclude that shared objects are smaller on av-

" " 5

4
v

J=
"o 3 , m

"o

IZl

$1
=E

0

- - - o - - No Cache
--..o-- Cacheable
- . .o- Ideal S

/ -

. ° " 2 2 - - * - "

o

0 5000 10000 15000 20000
Population

Figure 4. Bandwidth consumed as a function of client
population for the UW trace.

erage than other objects. Figure 4 shows the average band-
width consumed as a function of client population for the
three caching situations. We see that while caching reduces
bandwidth consumption compared to no caching, there is no
benefit to increased client population (i.e., there is no de-
crease in the slope of the bandwidth line).

3.5 Proxies and organizations

We produced Figures 1 and 3 by computing the hit rate of
random subsets of clients at each population size; therefore,
the figures assume that all clients are essentially identical in
their access patterns. A crucial question is whether clients
in a single organization, sharing a single proxy, have more
in common with each other than with clients in different or-
ganizations sharing other proxies. If there is high locality
within organizations, then populations smaller than the knee
in Figure 1 could achieve the maximum hit rate. What ben-
efit would clients in real organizations see if their proxies
were to cooperate with other real organizational proxies?

To answer this question is difficult, because it requires a
simultaneous trace of a large number of proxies in the Inter-
net. Such traces have not existed in the past. We have tried
to answer the question in our university environment, using
UW as a small-scale model of the broader networked com-
munity. The University of Washington consists of a large
collection of diverse organizations, e.g., museums of art and
natural history, schools of nursing and dentistry, and depart-
ments such as music, Scandinavian languages, and computer
science. Think of each such organization as an indepen-
dent business entity, with its own interests and focus, which
would typically have its own proxy sitting on its connection
to the Internet.

In fact, somewhat fortuitously, few organizations on our
campus currently employ proxies; this permits us to see most
outgoing client requests and their responses. In our tracing
software, before anonymizing each client's IP address, we
first classify that client as belonging to one of about 200
independent university organizations. In this way, we pre-
serve organizational membership information while protect-
ing client identities. In effect, this gives us a simultaneous

20

lO0 - ~ Ideal CooDerative 100
90 l Ideal Local
80 ~ ~.-,, Cacheable Cooperative 80

Cacheable Local

,0 600000 ttttlt IIi I i tt ,'° 4000
15 Largest Organizations

Figure 5. Breakdown of local and global proxy hit rates
for the 15 largest UW organizat ions.

70 1 uw
= ~ , Random

60

50

I1[~" 2o

1

15 Largest Organizations

Figure 6. Comparison of the proxy hit rates for the 15
largest UW and randomly populated organizations.

trace of Web requests from 200 organizations.
Figure 5 shows the ideal (left-hand bar) and cacheable

(right-hand bar) hit rates for the 15 largest UW organiza-
tions. The bars are labeled on the x-axis with the number of
clients seen in the trace for each of the organizations shown:
the smallest organization had 192 clients, while the largest
had 978 clients. These bars thus represent 15 medium-sized
companies or client communities.

The lower portion of each bar shows the hit rate that
would be seen by a local proxy acting on behalf of that or-
ganization. The upper portion of the bar shows the improve-
ment in hit rate that would be seen by that organization if all
of the university's organizations used perfectly cooperating
proxies. For the ideal bars, the average hit rate per group is
52%. The average cooperative-caching hit rate, i.e., the rate
that would be seen by a single proxy over all organizations
or by a perfect cooperative-caching scheme, is 69%. For the
cacheable hit rate bars, the average hit rate per group is 29%,
and the average cooperative hit rate is 38%. Therefore, if
perfect cooperative caching were possible, it would achieve
a noticeable improvement in hit rate for these proxies.

An interesting question raised above is whether clients in

. O - O

. ' ' " . . O. 0

-:3"

, , -"" ---o-- Caeheable (UW)
..--" ----o--- Ideal (MS)

. .-"" ---o-- Caeheable (MS)
. . . . I I I I I I I I

10 10A2 10A3 10"4 10A5 10"6 10A7 10A8
Population

Figure 7. Proxy cache hit rate as a funct ion of cl ient
populat ion.

our UW population request documents randomly, or whether
their access patterns are related in some way to those of other
members of the same organization. To answer this ques-
tion, we grouped clients at random into organizations with
the same sizes as the 200 real organizations and compared
local hit rates. Figure 6 shows a comparison of the hit rates
for the 15 largest UW and randomly assigned organizations.
The result indicates that there is a small (about 4%) average
increase in hit rates for the real organizations compared to
the randomly assigned ones. Therefore, there is some lo-
cality in organizational membership, but the impact is not
significant in this case.

A related question is whether a better grouping exists of
clients to proxies, for example, one based on each client's
document interests. To examine this question, we conducted
a clustering study. Using the trace data, we clustered clients
based on their document access vectors, using a standard
clustering algorithm (K-Means) that attempts to optimize
intra-cluster sharing. The existence of such groupings within
the university might imply the existence of an improved
wide-area caching scheme based on clustering.

As with the university organizations, we compared the
cluster-based client assignments to random assignments of
clients into groups of the same size. The randomly assigned
clusters have a consistently lower hit rate than the optimally
clustered organizations. Somewhat surprisingly, the differ-
ence between the two assignments is just slightly more than
the difference between the UW and random organizations
(about 5%). Again, there is some affinity in client access
patterns, but the impact on hit rate is not significant.

3.6 Impact of larger population size
We have seen that cooperative caching can increase hit rate,
perhaps substantially, below the knee of the curve in Fig-
ure 1. What happens above the knee, i.e., can cooperative
caching be effective in a wide-area network? Figure 7 shows
the data from Figure I when it has been plotted on a log scale
as a function of client population, fitted linearly using least
squares, and then extrapolated past the client population we
measured.

This graph suggests a number of interesting conclusions.
First, the slopes of the UW lines are greater than the Mi-

21

crosoft lines, a relation we could only infer indirectly from
Figure 1. Second, we notice that the slopes of the UW ideal
and cacheable lines are similar. This indicates that there
is little correlation between sharing and the cacheability of
documents for the UW population. However, the slope of
the Microsoft cacheable line is only 60% of the slope of the
ideal line. This indicates that cacheable documents were
shared to a lesser degree than uncacheable documents for
the Microsoft population. Third, the cacheability curves are
limited by the fraction of requests to cacheable documents,
which is 60% in the UW trace and 51% in the Microsoft
trace. In both of these cases, cooperative caching among
populations larger than 2.4 million does not increase the hit
rate to cacheable documents. Fourth, even if all documents
were cacheable, the ideal hit rate reaches a maximum at a
population of 11 million users for the UW trace and 2.9 mil-
lion for the Microsoft trace.

The Microsoft client population is more homogeneous
than the university population and therefore sees a higher
degree of document sharing. Quantitatively, 83.8% of re-
quests in the Microsoft trace are to previously requested doc-
uments; in the UW trace, 70.8% of requests are to previ-
ously requested documents. These statistics are the "ideal
hit rates" that would be seen by a cache, if all documents
were cacheable. But how much overlap is there to popu-
lar documents between the two populations? We looked at
the most popular documents requested by each of the two
populations, where we defined "most popular" to be those
documents accessed more than 500 times. In the UW trace,
there were 11,500 such documents, and in the Microsoft
trace, there were 17,000 such documents. Looking at the
1000 most popular in each of the two populations, we see
a 33% overlap; that is, of the 1000 most-popular documents
accessed by Microsoft, 330 of them are also among the 1000
most popular accessed by UW. Therefore, many of the same
documents are popular in both organizations.

In Section 4 we will present an analytical model to look
in more detail at the behavior of cooperative caching in
large-scale environments. Within the context of our own
traces, though, we can perform an interesting experiment to
create a larger population. Suppose that we implemented
cooperative caching between the University of Washington
and the Microsoft proxies. From the perspective of the UW
proxy, this increases the size of the population it sees by a
factor of 3.6; from the point of view of the Microsoft proxy,
population increases by a factor of 1.4. What is the im-
pact of combining the two populations through cooperative
caching?

To estimate the benefit of cooperative caching between
the two organizations, we did the following analysis. We
ran the university trace through a simulated UW proxy; we
then fed all misses to a second-level (cooperating) proxy
preloaded with all of the objects seen in the Microsoft trace.
Similarly, we ran the Microsoft trace simulating its proxy,
with a second-level proxy preloaded with all objects seen by
the UW trace. This gives us an idea of the maximum in-
cremental hit-rate benefit each proxy would see if the two
proxies would cooperate.

Figure 8 shows the results of this measurement. From
the figure, we see that the UW proxy, whose effective pop-

100

80

60-
fff

I~ 40-
..I-

20-

ol

Figure 8.

, , Cooperative
I , -~ , ' ,~ I

O O

o o

Hit rate benefit of cooperat ive caching be-
tween UW and Microsoft proxies.

ulation would increase 3.6-fold (from 23K to 83K clients),
would see its ideal hit rate increase only 5.1% - from 70.1%
to 75.9%; its cacheable hit rate would increase only 4.2% -
from 42.7% to 46,9%. The Microsoft proxy, whose effec-
tive population would increase by a factor of 1.4 (from 60K
to 83K clients), would see its ideal hit rate increase 2.7% -
from 83.8% to 86.5%; its cacheable hit rate would increase
only 2.1% - from 42.3% to 44.4%. To allow a more di-
rect comparison of these results, we ran another experiment
where the second-level cooperating proxy was preloaded by
only a portion of the Microsoft population, thereby increas-
ing the effective population size for the UW population by
the same factor of 1.4. In this experiment, the ideal hit rate
for the UW proxy increased by 1.6%, and the cacheable hit
rate increased by 1.3%. When scaled by equal factors, it is
interesting to note that Microsoft gains more benefit by co-
operating with the UW population than the UW population
gains by cooperating with Microsoft.

These results are disappointing, but not surprising. The
reason for these very small increases is that the unpopu-
lar documents are universally unpopular; therefore, it is un-
likely that a miss in one of these large populations will find
the document in the other population's proxy. For the most-
popular documents, cooperation does not help either, be-
cause only the first access (of the 500 plus accesses to a
popular document) has the potential to benefit from another
population's proxy.

3.7 Summary
In this section, we analyzed traces from two environments
to explore the bounds of cooperative-caching performance.
From this data, we saw that:

1. The behavior of cooperative caching is characterized
by two different regions of the hit rate vs. popula-
tion curve. For smaller populations, hit rate increases
rapidly with population; it is in this region that cooper-
ative caching can be used effectively. However, these
population sizes can be handled by a single proxy.
Therefore, cooperative caching is only necessary to
adapt to proxy assignments made for political or ge-
ographical reasons.

22

2. For larger populations (beyond the knee of the popula-
tion vs. hit rate curve), cooperative caching is unlikely
to provide significant benefit. We demonstrate this us-
ing our simultaneous traces of the Microsoft and uni-
versity populations: a four-fold increase to a large uni-
versity population via cooperative caching netted only
a 2.7% increase in cacheable hit rate.

3. Although there exist organizations with significant lo-
cality, such as the Microsoft population, our clustering
study shows that cooperative caching specialized to in-
terest groups is unlikely to be effective.

4. While some of these general trends have been ob-
served before, the inevitable conclusion for coopera-
tive caching has not been explicitly noted.

Despite these negative conclusions, it is still possible that
cooperative caching will perform better, either in steady-
state or for different (possibly future) Web characteristics.
In the domain where cooperative caching is effective, we
also wish to understand which of the proposed cooperative-
caching algorithms will be most beneficial. We explore these
questions in the next two sections.

4 An analytic model of Web accesses

In Section 3 we considered the performance potential of
cooperative caching using our trace data. In this section,
we extend these results analytically to better understand the
steady-state performance of cooperative caching for large
client populations and to speculate on caching performance
in light of future trends. We then examine the tradeoffs be-
tween various cooperative-caching schemes in Section 5.

4.1 Steady-state performance

The results in Section 3 bound the performance of caching
schemes in the short term - over a period of one week. How
would these results change if the cooperative caching sys-
tems were up and running for a month, a year, five years? In
other words, how will cooperative caching schemes perform
over the long run? In this section we examine the steady-
state or limiting performance of caching schemes.

Our model of steady-state performance assumes that a
cache can store all cacheable documents in the Web and that
there are no capacity misses in the workload 2. With this as-
sumption, it is conceivable that in the long term the hit rate
for cacheable documents would approach 100% since the
relative importance of cold-cache effects, such as compul-
sory misses, would diminish. For example, this would hap-
pen if the Web were static, i.e., documents were not chang-
ing and new documents were not being generated. In this
case, all documents would eventually be requested, and no

2We argue that the storage needed to do this is not intractable,
and that capacity misses are therefore not an important aspect of
the workload. Storage for the cacheable fraction of all documents
currently estimated to be on the Web would require a large contem-
porary disk array, such as the 9TB EMC Symmetrix 5930 storage
system [15].

further misses would be incurred thereafter. On the other
hand, if new documents are constantly being created and
old documents are changing, the hit rate for cacheable doc-
uments might remain low even over the long run.

The ultimate performance of a cache will therefore de-
pend upon the rate at which documents change compared to
the rate at which documents are requested. If the request
rate dominates document rate of change, then the cache will
still achieve near optimal hit rates. One request will miss
in the cache whenever a document changes, but all subse-
quent requests to that document will be hits. However, if
the request rate does not dominate document rate of change,
then the cache will perform poorly. Repeated requests to a
document will often find that the document has changed, so
most of those requests will be misses. Since increasing the
population served by a cache also increases the request rate,
cooperative caching increases the likelihood that document
request rate dominates document rate of change.

Similarly, the creation of new documents in the Web in-
troduces cold misses into the workload when those docu-
ments are requested. As with document rate of change, if the
Web grows slowly compared to the request rate, then caches
will perform well: only a small fraction of requests will re-
sult in cold misses. However, if the Web grows significantly
faster than the request rate, then the cache will be dominated
by cold misses and will perform poorly.

We use our steady-state model to explore these effects
in detail. We begin by introducing the model and then de-
scribe its parameterization in Section 4.3. Section 4.4 shows
performance results of the model.

4.2 The model

Our model is inspired by that of Breslau et al. [5]. We make
the following assumptions about clients and documents.

• There are N clients in the population. Clients are in-
distinguishable and act independently of one another.

• The total number of documents is n. For simplicity, we
model documents as indivisible, rather than as com-
pound, and assume that accesses to objects are inde-
pendent.

• The fraction of all requests that are for the i-th most
popular document, or the "popularity" of this docu-
ment, is denoted by Pi. We assume that documents
follow a Zipf-like distribution [5], i.e., that Pi is pro-
portional to 1/ i '~ for some constant a. The impor-
tant characteristic of a Zipf-like distribution is that it
is heavy-tailed - a significant fraction of the proba-
bility mass is concentrated in the tail, which in this
case means that a significant fraction of requests go
to the relatively unpopular documents. As a increases,
the distribution becomes less heavy-tailed, and a larger
fraction of the probability mass is concentrated on the
most popular documents.

• The distribution of time between requests made by the
client population is exponential with parameter AN,
where A is the average client request rate.

23

• The distribution of time between changes to a docu-
ment is exponential with parameter #, independent of
document size and latency, but not independent of pop-
ularity. We use two separate document change dis-
tributions, one for popular documents with mean #p
and another for unpopular documents with mean/z~,.
The number of popular documents is np. Document
change can be used to model either expiration or ac-
tual change.

• The probability that a requested document is cacheable
is Pc.

• The average document size is E(S). Document size is
independent of document popularity, latency, and rate
of change.

• The last-byte latency to the server that houses that doc-
ument has average value E(L). Last-byte latency is in-
dependent of document popularity and document rate
of change.

We justify the independence assumptions we make by
the fact that all the correlation coefficients (between each
pair of document size, document popularity, first-byte la-
tency, and document cacheability) computed from the UW
trace are close to O. We have also found that cacheable ob-
jects are more likely to have low latencies, making the model
conservative with respect to reality. The data from the UW
trace strongly suggests that the rate-of-change distribution
is heavy-tailed. However, to make our model tractable to
solve analytically, we assume that the rates of change for
popular and unpopular documents are distributed exponen-
tially. Since the steady-state performance of a proxy cache
improves as document inter-modification times increase, this
approximation underestimates cache performance and again
makes it conservative.

With these assumptions, we can compute a number of
performance characteristics. In steady state, it is easily
shown that for a single proxy cache serving a population of
size N:

• The steady state hit rate is

HN : pcCN,

where CN is the probability that a request is a hit given
that it is cacheable. The steady-state cacheable hit rate
to cacheable documents CN is

CN : Z p i , AN Np~
l<i<n A Pi -t- #"

Taking Pi proportional to 1/i s, a very close approxi-
mation to this sum is given by

j:l(1)
where

f l 1 C = - - d x .
< x < n x a

The first integral can be evaluated exactly for a = 1
and numerically for other values of a.

• The expected last-byte latency to serve a request is
given by

latreq = (1 - HN)E(L) + HN * lathit,

where lathit is the latency for a cache hit.

• The average bandwidth savings per request due to
proxy caching, measured in kilobytes not transferred,
is denoted BN and is given by

BN = HNE(S).

• The expected amount of storage required in a proxy
cache for a population of this size is nHNE(S) . This
is actually optimistic, as it assumes that only objects
that are cacheable and have not expired are cached.

The key differences between our model and that pre-
sented by Breslau et al. are that: (1) we consider the steady-
state behavior of caching systems rather than caching be-
havior based on a finite request sequence, and (2) we incor-
porate document rate of change into the model rather than
assuming that documents are static. Our goal in building the
model also differs from the goals pursued by Breslau et al.
They used their model to study proxy cache replacement al-
gorithms; we use our model to understand the performance
of large-scale, cooperative-caching schemes in terms of hit
rate, latency, bandwidth savings, and storage consumed.

We note that a number of the assumptions made here do
not match some empirical measurements, and therefore the
results of our model cannot be compared directly to the trace
results shown in Section 3. For example: (1) our empirical
results are based on a one-week trace, while our model ex-
amines steady-state behavior, (2) the number of documents
seen by the trace is significantly smaller than the number
in the Web as a whole, and (3) the trace-based simulations
did not expire documents from the cache and we cannot pre-
cisely model the rate-of-change distribution seen in the trace.

The goal of this section is not to exactly model empirical
results. Rather, it is to examine at a high level the impact of
changes to, or the sensitivity of, various workload parame-
ters in light of future trends.

4.3 Model parameters

We parameterize the model using values computed from the
UW trace. These values are summarized in Table 2.

We estimate the number of objects in the Web, n, using
results from a study by Lawrence et al. [25]. Based upon
February 1999 data, they estimate that the Web has 800 mil-
lion compound Web documents. We used an estimate of 3.2
billion objects in the Web, since each compound document
in the UW trace contained an average of four objects.

We assume that the time to serve documents from a
proxy cache latmt is 10ms. Although this may be an opti-
mistic value, particularly when caches are under heavy load
and requests experience queueing delays, increasing lathit

24

Parameter Value Parameter I Value
0.8

np

A

OL

n 3.2 billion
10.4 million

Pc 0.6
E(S) 7.7 KB
E(L) 1.9 seconds

590 reqs/day latmt 10 ms
Slow Fast

i| i l'14, ays #,, I l' minutes
/z~, 1/186 days #u 1/85 days

Mid Slow Mid Fast
I #p [1/1 day #p 1/1 hour

#u [1/186 days #~, 1/85 days

Table 2. Default model parameters from the UW trace.

Popular Unpopular
Scenario Mean Median Mean Median

Normal 14 < 1 186 85
Always Change 3 < 1 129 23
Never Change 27 < 1 763 180

i Cacheable 5 < 1 168 6 5
I Uncacheable < 1 < 1 22 < 1

Table 3. Document rate of change (in days between
changes) for three different policies (Normal, Always
Change, and Never Change), and then broken down
by Cacheable and Uncacheable documents using the
Always Change policy.

merely offsets the latency results by a similar amount until it
reaches a second or more.

Table 3 summarizes the rate-of-change values observed
in the UW trace for three policies. We found that document
rate of change is correlated with document popularity, so the
table contains results separated into popular and unpopular
documents. This finding is consistent with previous rate of
change studies. For example, Douglis et al. also found that
the popular pages changed more often than the less popu-
lar pages [13]. We define popular documents as the most
frequently requested documents that account for 40% of all
requests. Due to the Zipf popularity distribution, the pop-
ular documents comprise only 0.3% of all documents. We
account for this in the model by using two separate rate-
of-change distributions, one for popular documents (mean
#p) and another for unpopular documents (mean/h,). In our
model results, we use four parameterizations of these distri-
butions. The "slow" parameterization uses the mean rates
of change for popular and unpopular documents computed
from the UW trace as the means/zp and #~, of the rate-of-
change distributions in the model. The "fast" parameteriza-
tion uses the median rates of change as computed from the
UW trace as the means for the rate-of-change distributions
in the model. And "mid slow" and "mid fast" represent in-
termediary values for the rate-of-change parameters.

Since our UW trace does not record the data transferred
during a connection, we must rely on the "Last-Modified"
HTTP header to detect document changes. However, this
header is not always present in Web server responses. Other
studies on rate of change, where the full document content
was available, have determined that relying solely on HTTP

header information has some pitfalls, the most common be-
ing when the headers signal a change when none has oc-
curred [13, 36]. Wills et al. [36] also quantify how often
documents change when the "Last-Modified" field is miss-
ing. The top three lines of Table 3 show results that differ
only in how we treat requests to documents with incomplete
header information (36% of the requests). For the "normal"
results, we simply ignore those documents. For the "always
change" results, we calculate an upper bound by assuming
that those documents change between each access. For the
"never change" results, we calculate a lower bound by as-
suming that no document missing this header field changes.

We also investigated whether the rate of change for
cacheable documents was different than that of uncacheable
documents. The "cacheable" and "uncacheable" lines in Ta-
ble 3, generated using the "always change" policy, show
that uncacheable documents change much more rapidly than
cacheable documents. It is important to note that since
our model is restricted to cacheable documents, the rate of
change results for cacheable documents are more relevant as
input parameters to the model.

4.4 Performance of large scale proxy caching

We begin by examining basic performance results from the
model using parameters extracted from our trace data. We
then consider the effects of possible future changes in the
fundamental parameters of the Web. In particular, we ex-
amine the impact on performance of (a) the rate of change
of Web documents #, (b) the client request rate A and pop-
ulation size N, (c) the Zipf parameter a of the popularity
distribution, and (d) the rate of growth of the Web, measured
in the number of accessible documents n.

4.4.1 Hit rate, latency, and bandwidth

Figure 9 shows the steady-state hit rate for cacheable docu-
ments CN as a function of the population size N, graphed
on a log scale. The figure shows four curves correspond-
ing to four possible values for the rate of change parameters
presented in Table 2. A key question to address is: given
the client request rate, document rate of change, and docu-
ment popularity distributions, how large a client population
is needed to achieve a cache hit rate approaching Pc, the frac-
tion of cacheable Web documents.

All these curves can be viewed as consisting of three re-
gions: (1) an initial region in which hit rates grow slowly,
(2) a large middle region in which hit rates grow linearly
(as population grows exponentially), and (3) a final region
in which hit rates grow slowly again, ultimately converging
to 100%. In the initial region, the request rate is too low to
dominate the rate of change for unpopular documents. As a
result, the hit rate for unpopular documents remains close to
zero and almost all of the hit rate improvement is accounted
for by hits on popular documents. The transition to the mid-
dle region marks the beginning of a significant increase in
the hit rate to unpopular documents. The heavy-tailed nature
of the popularity distribution implies that an exponential in-
crease in request rate is needed to obtain a linear increase in
the fraction of requests to unpopular documents that are hits,

25

100 -

80

M
¢r 6O

.~ 40
m

o
2 0 ~

0
10A2

o'° • . " j / ~ ,
• o , " i t

• / / /
/~/ SI.O.W ,14 days. 186 days)

J ~ Mid Siow (1-~ay. 186 days)
J . . ' " . ; / - Mid Fast (1 hour , 8 5 days)

~ - - Fas t (5 m ins , 8 5 days)

. . . . i i i i i i
10A3 10A4 10A5 10A6 10A7 10A8

Population (log)

Figure 9. Cacheable request hit rate as a function of
client population (log scale).

2.0-

'O

1.5
O

1.0

t~
, - I
• " 0.5
m

0.0

Slow (14 days, 186 ~ I" " I ' "~ 77,,"
. Mid Slow (1 day, 186 days)

Mid Fast (1 hour, 85 days)
.............. Fast (5 mins, 85 days)

. . . . I I I I I I I I

10 10A2 10A3 10"~4 10A5 10A6 10A7 10"8
Population (log)

Figure 10. Mean request latency as a function of client
population.

i.e., requests to documents that have been requested more
recently than they have changed. The transition to the fi-
nal region occurs when the hit rate for unpopular documents
approaches 100%. Behavior in this region is once again ac-
counted for by improvements in the hit rate for popular doc-
uments. Here, the request rates are high enough to domi-
nate those inter-document modification times that are much
smaller than the mean of the exponential distribution.

We see from Figure 9 that proxy cache hit rate is very
sensitive to document rate-of-change parameters. The client
population required to achieve 90% of the cacheable hit rate
Pc is only 250,000 for the slowest parameters but nearly 20
million for the fastest parameters.

Finally, we would like to understand how hit rate trans-
lates into actual performance improvement. Hit rate funda-
mentally determines the improvement in object access la-
tency and the reduction in network bandwidth consumed by
transmitting Web objects. The effect on object access la-
tency is shown in Figure 10. This figure graphs mean latency
as a function of N, assuming a single cooperative cache for
the entire population that serves cache hits with an average
latency of 10ms. The curves asymptote at (1 -pc)E(L), the
mean latency of uncacheable documents; recall that pc=0.6
and E(L)=I .9 seconds, so the curves asymptote at 0.76 sec-

¢1 "R
113

,,¢
0

o

lO0

8o
B

p....--
6O

4O C

2O

0 I
2

rain

,0 .'""" . ."A

° . o ° "

. o ° ° ° o " °

. o - ° ° °
mu_p

. mu_u

I I I I I I I I I I I i I
5 10 30 1 2 6 12 1 2 7 14 30 180

h o u r day
Change Interval (log)

Figure 11. Sensitivity of hit rate to the rate of change
of popular and unpopular documents, #p and #~,. The
hit rates were calculated for a population of 250,000.

onds. For the slower rates of change, most of the benefit
is achieved at medium-sized populations: 95% of the maxi-
mum benefit is achieved at a population of 500,000. For the
fast rates of change, 68% of the maximum benefit is achieved
at a population of 500,000, and it decreases thereafter. Since
the impact on latency and bandwidth is directly a function
of hit rate, the curves for the effect on bandwidth are iden-
tical to those for latency. We therefore omit the graph of
bandwidth as a function of population for brevity.

4.4.2 Document rate of change

Two key issues regarding document rate of change concern:
(1) how sensitive the hit rate is to document change rate, and
(2) which parameter has the greatest impact on hit rate - the
rate of change of popular documents #p or unpopular docu-
ments #u. Figure 11 shows the sensitivity of the proxy cache
hit rate to the rate of change of popular and unpopular docu-
ments for a population of 500,000 clients. The x-axis is the
mean interval between changes to a document (the inverse of
#) on a log scale, and the y-axis is the hit rate of cacheable
documents. The top curve shows the effect on hit rate of
varying the mean rate of change of popular documents/zp
from a very slow rate, viz., 1 change every 180 days (point
A), to a very fast rate, viz., 1 change every minute (point B).
For this curve, the rate of change of unpopular documents #~,
is held constant at the slow rate of 1 change every 180 days
to minimize its impact. Similarly, the bottom curve shows
the effect on hit rate of varying the mean rate of change of
unpopular documents #u between the same extremes of slow
(point A) and fast (point C) rates of change. For this curve,
the rate of change of popular documents #p is held constant
at the slow change rate.

From Figure 11 we see that the proxy cache hit rate is
very sensitive to the change rates of popular and unpopular
documents. For popular documents, hit rate varies moder-
ately when documents change faster than once a day. When
popular documentS change slower than once a day, there is
little impact on hit rate. In contrast, hit rate is sensitive to the
rate of change of unpopular documents on an entirely differ-
ent time scale. For unpopular documents, hit rate varies con-

26

t~

,l-

t -
O
t~ ¢.)

100 -

80-

60

4 0 . . ° ° °
. ° °

20

0 , , ,
2 5 10

ra in

f
°

.o
**

o*

o°
o."

mu_p
. mu_u

I I I I I I I
3 0 1 2 6 12 1 2

h o u r day
Change Interval (log)

I I I I
7 14 30 1 8 0

F i g u r e 12 . Sens i t iv i ty of hit rate to the rate of change
of popular and unpopular documents, #p and #,,. The
hit rates were calculated for a population of 20 million.

siderably when documents change slower than once a day.
Once unpopular documents change at least once a day, they
are already changing faster than they are being requested• At
this point, hit rate reaches a minimum and does not decrease,
even at higher rates of change. Thus, for popular documents
the issue is whether they change on the scale of minutes to
hours; for unpopular documents it is whether they change on
the scale of days to weeks to months.

We also see from Figure 11 that the rate of change of
unpopular documents #~, has a more significant impact on
proxy cache hit rate than the rate of change of popular docu-
ments pp. This behavior is a result of the dynamics between
document popularity and rates of change. Requests are heav-
ily skewed to popular documents; therefore, even with high
change rates, the request rate to popular documents domi-
nates. While each document change makes the next request
to that document miss in the cache, the popularity of the
document is such that it will have many requests to the doc-
ument before it changes again, and these requests hit in the
cache• However, the request rate to unpopular documents
is so low that the change rate dominates. Even if unpopu-
lar documents change at a moderate rate, requests to those
documents always find out-of-date versions in the cache.

Figure 12 shows results similar to Figure 11, except for a
much larger population of 20 million users. This population
corresponds to a hit rate of 90% for the fast rates of change•
Comparing the figures, we see a decrease in the time scales
at which hit rate is sensitive to rates of change• For pop-
ular documents the time scale is now an hour or less, and
for unpopular documents most of the variation in hit rate
is between rates of change of 10 minutes to a month. At
these very large population sizes, document request rates are
significantly higher than with the smaller population in Fig-
ure 11. For both popular and unpopular documents, these
high request rates dominate even higher rates of change•

4.4.3 Client request rate

The population needed to achieve a given hit rate varies in-
versely with the client request rate A. When A is very low,
even large populations cannot dominate the object rate of

change and therefore cannot keep the cache filled with up-
to-date objects. On the other hand, when A is extremely
large, even small populations can maintain a filled, up-to-
date cache. Trends indicate that A is increasing significantly
over time; the per client request rate in the UW trace is eight
times that of the 1996 DEC trace [24]. Unfortunately, there
is minimal current or historical data on document rate of
change• The rates of change in the UW trace seem well
within a factor of two of those presented in [13]. Based upon
just these two points of reference, it does appear that A is
growing much faster than #u- As a result, the populations at
which large-scale caching systems experience diminishing
returns will decrease over time.

4.4.4 Document popularity and size of the Web

We also examined the sensitivity of the model to variations
in the Zipf parameter a and the number of documents in
the Web n. We do not have sufficient space to describe the
results in detail, and so we briefly summarize them here. In-
creasing a skews the distribution even further towards pop-
ular documents• This greater skew towards popular doc-
uments significantly increases hit rates for slower rates of
change, but only slightly increases hit rates for faster rates
of change• Increasing the number of documents n simply
shifts the curves for slow and fast rates of change to larger
populations; it does not significantly change the shapes of
the curves. This population shift is roughly in proportion to
the increase in n: for example, for n=3.2 billion, the slow
curve reaches a 90% hit rate at a population of 250,000; for
n=32 billion, the slow curve reaches a 90% hit rate at a pop-
ulation of 25 million; and for n=320 billion, the slow curve
reaches a 90% hit rate at a population of 250 million.

4.5 Summary
In this section, we developed an analytic model and used
it to examine the steady-state performance of cooperative-
caching schemes. Our model extends the results of our trace
to a wider range of parameter values, including document
popularity and document rate of change. We show again that
relatively small populations achieve most of the performance
benefits of cooperative caching.

5 Comparing cooperative caching schemes

The previous section explored the performance of large Web
proxy-caching systems. This section examines the question
of how these systems are designed and organized. Proxy
caching starts at the level of individual organizations, small
and large• To achieve the performance of caching systems
with large populations, some form of cooperative caching
among these organizational proxies will have to be used.
In this section, we extend the calculations from the model
to understand the differences in performance between vari-
ous cooperative-caching systems as a function of scale• We
compare three basic schemes: a hierarchical caching system
inspired by Squid [32]; a flat hash-based caching system in-
spired by [21, 35]; and a directory-based scheme inspired
by Summary Cache [16]. We evaluate these schemes at the

27

Request
Arrival

Rate

Average
Request
Latency

Storage
Per Proxy

Hierarch ica l

ANi(1 - H N I + I)

to level i

(HN~+I = O)

(1 - HN,)E(L)
+ ~ l < i < k Li(HNI - Hgi+l)

~-~,l <i<k nd'-l HN~ E(S) /m

H a s h - b a s e d

AN/m

(1 - HN)E(L) + HNLo

nHNE(S)/m

D i r e c t o r y - b a s e d

AN/m
AN + - ~ (1 -- H_.~)HN(I__.~)
(2nd term - requests
from other proxies)

(1 - HN)E(L)
+(1 - H~)HN(I__~)2Lc

+HaLl
m

nH_~ E(S)
(lower bound)

Table 4. Cooperative caching performance parameters.

scale of a City, a State, and a large region (the West Coast of
the U.S.). Our results will show why there is little motivation
to scale to a region larger than a medium-sized city.

The hierarchical caching system assumes a hierarchy of
k levels of caches, with a fanout of d at each level, where the
bottom-level caches serve as proxy caches for populations of
size Nk. A client's request is forwarded up the hierarchy un-
til a cache hit occurs; if none occurs, the request is forwarded
to the server. A copy of the requested object is then stored in
all caches along the request path. In what follows, we will
assume that the top-level cache serves an overall population
of size N1 = N, each second-level cache serves a disjoint
subpopulation of size Ne, and on down to a set of k-th-level
caches, each serving subpopulations of size Nk. (Concisely,
Ni -- N/d i-1 .) For simplicity, we assume fixed latencies
between the caches in the hierarchy, where Li is the latency
between level i + 1 and level i caches.

The hash-based caching system assumes a total of m
caches cumulatively serving a population of size N. (We
will assume m = d k from the hierarchical scheme.) We as-
sume a fixed average latency of Lc to transmit data from a
random cache to a client in the population, and a hash func-
tion that randomly maps URLs to one of the m caches uni-
formly. Upon a request by a client, the client hashes the
URL and forwards the request to the corresponding cache
C. If the cache stores the document, it is forwarded to the
client. Otherwise, the request is forwarded to the server, and
a copy is returned to the client and to the cache C. The
advantages of such a scheme are: (1) that load is balanced
across the proxy caches, and (2) only one copy of each docu-
ment is stored in the entire cooperative caching system. Such
schemes have been proposed primarily for use in a local-area
setting, since for large populations L~ may be sizeable.

Finally, in the directory-based system, we assume a total
of m caches cumulatively serving a population of size N. In
this system, the population is partitioned into subpopulations
of size N/m, and each subpopulation is served by a single
proxy cache. Each proxy cache maintains a directory that
summarizes the set of documents stored at each of the other
proxy caches in the system. When a client issues a request
for a document, it is forwarded to its proxy. If the proxy
has the object, it returns it directly to the client. Otherwise,
the proxy cache checks its directory to see if another proxy
cache in the system stores a copy of the document. If so, the
request is sent to a random cache storing a copy, which then
returns a copy of the document to the proxy cache and to the

requesting client. We assume a latency of Lt to transmit data
from a proxy cache to a client it serves, and a latency of Lc
between proxy caches in the system.

To maintain the directories, each proxy cache period-
ically (every t time units) sends out an update about the
contents of its cache. In particular, it multicasts the set of
changes to its document set since the last request. We ignore
the overhead of these messages in our subsequent analysis,
as well as the extra misses caused by directory entries that
become stale between updates.

These descriptions of cooperative caching systems are
stated in general terms that emphasize the structure and oper-
ation of the systems, glossing over potential implementation
details. For example, the description of the hierarchical sys-
tem is in terms of multiple levels of caches. In practice, these
caches may be special caches maintained at ISPs, or exist-
ing organizational caches that serve the role of first, second,
and third level caches for different portions of the Web name
space, as with [33]. The issue of whether it is better to use
separate dedicated caches or to overload existing individual
caches with multiple responsibilities is a detailed design is-
sue that is beyond the scope of this paper.

Table 4 summarizes the performance of the three coop-
erative caching schemes, based on the model. Recall from
Section 4 that E(L) is the average latency to a server and
E(S) is the average document size. We compare the perfor-
mance of these schemes at three different scales:

1. A medium-sized City (N=0.5 million users)

2. A small State (N=5 million users)

3. The west coast of the U.S. (N=50 million users)

From the UW trace, the average client issues just un-
der 600 requests. Based on this, we assume that there are
50,000 clients behind each lowest-level proxy cache, which
results in an average request rate of about 350 requests per
second. This request rate is well within the load a single host
can handle as a proxy cache (e.g., [12] reports 500 requests
per second, and various single host proxies from the Web
Caching Bake-off report throughputs ranging from 96-690
requests per second [31]). Based on the populations at dif-
ferent scales, this results in a total of m = 10 organizational
proxy caches for the City, m = 100 caches for the State and
m = 1000 caches for the west coast. For the hierarchical
scheme, we assume that d -- 10, giving us a two-level hier-
archy for the city (a single top-level proxy cache on top of

28

Hierarchical Hashed Directory
Arrival r l = 150M/day 30M/day 37M/day
Rate r2 = 30M/day
Latency 0.86 secs 0.88 secs 0.89 secs
Storage 11 TB 1.5 TB 9.5 TB

Table 5. City cooperative caching performance.

Hierarchical '[Hashed Directory
Arrival rl = 1.37B/day 29.5M/day 37.7M/day
Rate r2 = 147M/day

r3 = 29.5M/day
Latency 0.79 secs 0.83 secs 0.85 secs
Storage 11 TB 150 G B 9.5 TB

Table 6. State cooperative caching performance.

the 10 organizational caches), a three-level hierarchy for the
state, and a four-level hierarchy for the west coast.

We use the values in Table 2 from the UW trace to pa-
rameterize the model. For rates of change, we used the "mid
slow" values, where/zp is one change per day and #~, is one
change per 186 days. These rates of change most closely
matched the performance observed in the UW and Microsoft
traces. We further assume that the average last-byte latency
to transfer a document: (1) from an organizational proxy
cache to a client is 10ms, (2) between two random caches in
the city is 50ms, (3) between two random caches in the state
is lOOms, (4) and between two random caches on the west
coast is 500ms. We derived these numbers by multiplying a
basic latency by the number of round trips required to down-
load an average document. For the basic latency, we used
ping latencies from the University of Washington to popu-
lar Web sites whose distances correspond to the three levels
of the cache hierarchy. Since the average document size in
our trace is 7.7KB, we estimate that five round trips between
the sender and the receiver of the document are required to
complete the transfer (due to TCP/IP protocol overhead).

Because these latencies are based upon a simple model
of the network (e.g., persistent connections might reduce the
number of round trips if the connection has been ramped up
to a high congestion window) and pings from a single net-
work source, we also evaluated the sensitivity of our model
results to these parameters. We did this evaluation indirectly
by varying the average latency for downloading documents
from servers, thereby changing the ratio of cache latency to
server latency. In addition to the trace value of E(L)=I .9
seconds, we also evaluated the schemes using average doc-
uments latencies ranging from 250ms to I0 seconds. In
each case, their relative performance was qualitatively simi-
lar when E(L)=I .9 seconds.

Tables 5, 6 and 7 present model results for the three
cooperative-caching schemes using our parameterizations.
From these tables we can draw a number of conclusions.
First, we see that the bulk of the achievable benefit, in terms
of latency savings, is already achieved at the scale of city-
level cooperative caching. Indeed, the minimum possible av-
erage latency we could hope for is (1 - pc)E(L), which for
our parameters is 0.76 seconds. All three schemes already
achieve a value close to this in the city. Second, broadening

Arrival
Rate

Latency

Hierarchical Hashed Directory
r] = 13B/day

r2 = 1.37B/day
r3 = 147M/day
r4 = 29.5M/day

0.78 secs

29.5M/day

1 .1s~s

37.9M/day

1.13 secs
Storage 11 TB 15 GB 9.5 TB

Table 7. West Coast cooperative caching performance.

the region to increase population also increases inter-proxy
latencies. As a result, a fiat cooperative-caching scheme is
no longer effective. For the west coast, the average latency
between proxy caches is sufficiently large that the perfor-
mance of the flat hash-based and directory-based schemes is
worse, in terms of document latency, than their performance
at the level of the state, despite the ten-fold increase in popu-
lation. Obviously, this problem could be solved by designing
hierarchical variants of these two schemes.

In terms of request rate, we see that for all schemes the
lowest-level proxy caches have similar request rates (though
the directory scheme has a slightly higher value), and are
dominated by the requests from clients served directly by
that proxy. However, even at the scale of city-wide cooper-
ative caching, the top-level cache in the hierarchical scheme
is a bottleneck. Since request rate will be directly correlated
with queueing, the average latency that will be observed
in the hierarchical scheme will be significantly higher than
shown here, particularly as we scale up to the state or west
coast level. Therefore, if scaling up to these levels is desir-
able (which is itself a questionable proposition at best), the
load at the higher levels of the hierarchy must be distributed
across multiple proxy caches. There are a number of fairly
obvious and natural ways to do this. Finally, we see that the
hash-based scheme has the advantages that each document
is stored only in one proxy cache and the load is balanced
across the caches.

In summary, all three schemes perform well in the region
where cooperative caching is advantageous (e.g., at the level
of a medium-sized city). Since documents are stored only
in one cache, a hash-based scheme achieves the best storage
efficiency. In a broader area (e.g., the size of the west coast),
the increased latency of inter-proxy communication eclipses
the very limited benefits of increased population.

6 Conclusions

This paper studied cooperative proxy caching in local- and
wide-area environments. We used a combination of trace-
based analysis and analytic modelling to evaluate coopera-
tive caching, and proxy caching in general, at a wide range of
population sizes, document characteristics, and access pat-
terns. At a high level, our results show that:

1. In the absence of significant changes in client behav-
ior, there is little point in continuing to expend ef-
fort on the design and evaluation of highly scalable,
cooperative-caching schemes. The scale at which co-
operative caching makes sense (viz., up to the level of

29

a medium-sized city) is sufficiently small that reason-
able schemes will achieve most of the benefit.

2. The largest benefit for cooperative caching is achieved
for relatively small populations. This is demonstrated
by our analysis of cooperation among small organiza-
tions within the university environment. Our simul-
taneous traces of UW and Microsoft confirmed the
marginal benefit of cooperative caching among orga-
nizations with populations of 20K clients or more.
Scaling beyond such populations provides only minor
improvement and therefore makes sense only in very
high-bandwidth, low-latency environments.

3. Performance at the population level at which coop-
erative caching works effectively is basically lim-
ited by document cacheability. Therefore, increasing
cacheability of documents is the main challenge for re-
search aimed at improving Web cache behavior.

4. Cluster-based analysis of client access patterns indi-
cates that cooperative-caching organizations based on
mutual interest offer no obvious advantages over ran-
domly assigned or organization-based groupings.

Fundamentally, the usefulness of cooperative Web proxy
caching depends upon the scale at which it is being applied.
From our trace data of users at the University of Washington
and Microsoft Corporation, cooperative Web proxy caching
is an effective architecture for small individual caches that
together comprise user populations in the tens of thousands.
At such small scales, any reasonable cooperative caching
scheme will serve. But cooperative caching is not required
for user populations of this size. If it is administratively
and politically feasible, a single proxy cache can provide the
same benefits with fewer resources and less overhead.

Whether or not they use cooperative caching locally,
large organizations should use proxy caching for their user
populations. A key issue is whether these large organiza-
tional caches benefit from cooperating. Experiments with
our steady-state model indicate that cooperation among the
organizational caches within a medium to large city will still
provide benefit, although an incremental benefit, over co-
operative caching at small scales. Assuming that bandwidth
within a city is plentiful and latencies are small, the overhead
of cooperative caching would be low and therefore worth the
secondary benefits that such caching provides. In principle,
the organizational caches within a city can use a hash-based
scheme to maximize storage efficiency. In practice, however,
given the cheap cost of disks, using a hash-based scheme to
spread load is more important than storage efficiency. Ex-
trapolating to yet larger scales, such as the state level and
even the west coast of the U.S., our model results indicate
that cooperative caching among cities would provide very
limited additional benefit, particularly given the increased
latencies among caches.

Finally, we note that our results on cooperative caching
are based upon Web workload behavior currently observed.
Fundamental shifts in Web workloads might change these re-
suits. For example, the workloads we have examined consist
primarily of static documents. But we have also observed

a growing presence in Web workloads of streaming multi-
media traffic [37], and streaming multimedia objects have
different characteristics than static objects. Their average
size is orders of magnitude larger, so cooperative caching
for storage efficiency becomes more appealing. Further-
more, last-byte latency is not a critical performance met-
ric for streaming data. Instead, reducing jitter and mak-
ing more effective use of the network become more impor-
tant. Lastly, given the sizes of streaming objects, and the
relatively long period of time over which they are trans-
ferred over the network, transport optimizations like mul-
ticast might prove more effective.

Acknowledgements

We would particularly like to thank those people who helped
make our traces a reality. Paul Leach of Microsoft patiently
and generously worked with us to produce the Microsoft
data included in our study. At the University of Washington,
Steve Corbato, Art Dong, Corey Satten, and the other mem-
bers of the Computing and Communications organization at
UW supported our effort. Finally, the SOSP referees pro-
vided thorough comments and suggestions. We are also very
grateful to Jeff Mogul, our shepherd, for his guidance in im-
proving the focus and clarity of our paper. This research was
supported in part by DARPA Grant F30602-97-2-0226, Na-
tional Science Foundation grant EIA-9870740, US-Israel Bi-
national Science Foundation grant 96-00247, and Intel and
Microsoft Graduate Research Fellowships.

References
[1] J. Almeida, V. Almeida, and D. Yates. Measuring the

behavior of a World Wide Web server. Technical Re-
port 96-025, Boston University, Oct. 1996.

[2] V. Almeida, A. Bestavros, M. Crovella, and A. de-
Oliveira. Characterizing reference locality in the
WWW. Technical Report 96-011, Boston University,
June 1996.

[3] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Pat-
terson, D. S, Roselli, and R. Y. Wang. Serverless net-
work file systems. ACM Trans. on Computer Systems,
14(1):41-79, February 1996.

[4] M.F. Arlitt and C. L. Williamson. Web server workload
characterization: The search for invariants. In Proc.
of the ACM SIGMETRICS '96 Conf., pages 126-137,
May 1996.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and Zipf-like distributions: Evidence and
implications. In Proc. of IEEE INFOCOM '99, pages
126-134, March 1999.

[6] R. Caceres, E Douglis, A. Feldmann, G. Glass, and
M. Rabinovich. Web proxy caching: The devil is in the
details. In Workshop on Internet Server Performance,
pages 111-118, June 1998.

[7] P. Cao. Characterization of Web proxy traffic and Wis-
consin proxy benchmark 2.0. http://www.cs.wisc.edu/
,-~cao/w3c-webchar-position, Nov. 1998.

30

[8] E Cao and S. Irani. Cost-aware WWW proxy caching
algorithms. In Proc. of the 1st USENIX Symp. on ln-
ternet Technologies and Systems, pages 193-206, Dec.
1997.

[9] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. E
Schwartz, and K. J. Worrell. A hierarchical Internet
object cache. In Proc. of the 1996 USENIX Technical
Conf., pages 153-163, January 1996.

[10] M. E. Crovella and A. Bestavros. Self-similarity
in World Wide Web traffic: Evidence and possible
causes. In Proc. of the ACM SIGMETRICS "96 Conf.,
pages 160-169, May 1996.

[11] C. R. Cunha, A. Bestavros, and M. E. Crovella. Char-
acteristics of WWW client-based traces. Technical Re-
port BU-CS-95-010, Boston University, July 1995.

[12] P. Danzig. NetCache architecture and deployment.
In Proc. of the 3rd Int. WWW Caching Workshop,
http://wwwcache.ja.net/events/workshopl01/NetCache-
3_2.pdf, June 1998.

[13] E Douglis, A. Feldmann, B. Krishnamurthy, and
J. Mogul. Rate of change and other metrics: a live
study of the World Wide Web. In Proc. of the 1st
USENIX Symp. on Internet Technologies and Systems,
pages 147-158, Dec. 1997.

[14] B. Duska, D. Marwood, and M. J. Feeley. The mea-
sured access characteristics of World Wide Web client
proxy caches. In Proc. of the 1st USENIX Symp. on
Internet Technologies and Systems, pages 23-36, Dec.
1997.

[15] EMC Corporation, http://www.emc.com/products/en-
terprise_storage~systems/systems.htm. Symmetrix
3000 and 5000 Enterprise Storage Systems Product
Description Guide, 1999.

[16] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
cache: A scalable wide-area web cache sharing proto-
col. In Proc. of ACM SIGCOMM '98, August 1998.

[17] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Kar-
lin, H. M. Levy, and C. A. Thekkath. Implementing
global memory management in a workstation cluster.
In Proc. of the 15th ACM Syrup. on Operating Systems
Principles, pages 201-212, Dec. 1995.

[18] A. Feldmann, R. Caceres, E Douglis, G. Glass, and
M. Rabinovich. Performance of web proxy caching
in heterogeneous bandwidth environments. In Proc. of
1EEE INFOCOM '99, March 1999.

[19] S. Glassman. A caching relay for the World Wide Web.
In Proc. First Int. World Wide Web Conf., pages 60-76,
May 1994.

[20] S. D. Gribble and E. A. Brewer. System design issues
for Internet middleware services: Deductions from a
large client trace. In Proc. of the 1st USEN1X Symp.
on Internet Technologies and Systems, pages 207-218,
Dec. 1997.

[21] D. Karger, T. Leighton, D. Lewin, and A. Sherman.
Web caching with consistent hashing. In Proc. of the
8th Int. World Wide Web Conf., May 1999.

[22] E Krishnan and B. Sugla. Utility of co-operating Web
proxy caches. In Proc. Seventh Int. World Wide Web
Conf., April 1998.

[23] T.M. Kroeger, D. D. E. Long, and J. C. Mogul. Explor-
ing the bounds of Web latency reduction from caching
and prefetching. In Proc. of the 1st USENIX Symp. on
Internet Technologies and Systems, pages 13-22, Dec.
1997.

[24] T. M. Kroeger, J. C. Mogul, and C. Maltzahn. Digi-
tal's Web proxy traces, ftp://ftp.digital.com/pub/DEC/
traces/proxy/webtraces.html, August 1996.

[25] S.R. Lawrence and C. L. Giles. Accessibility of infor-
mation on the Web. Nature, 400(6740):107-109, July
1999.

[26] B. A. Mah. An empirical model of HTTP network traf-
fic. In Proc. of lEEE INFOCOM '97, pages 592-600,
April 1997.

[27] J.-M. Menaud, V. Issarny, and M. Banatre. A new pro-
tocol for efficient transversal Web caching. In Proc.
of the 12th Int. Symp. on Distributed Computing, pages
288-302, September 1998.

[28] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang,
S. Floyd, and V. Jacobson. Adaptive Web Caching:
Towards a New Global Caching Architecture. Com-
puter Networks and ISDN Systems, 30(22-23):2169-
2177, Nov. 1998.

[29] J. C. Mogul. Network behavior of a busy web server
and its clients. Technical Report 95/5, DEC Western
Research Laboratory, Oct. 1995.

[30] M. Rabinovich, J. Chase, and S. Gadde. Not all hits are
created equal: Cooperative proxy caching over a wide
area network. In Proc. of the 3rd Int. WWW Caching
Workshop, June 1998.

[31] A. Rousskov, D. Wessels, and G. Chisholm. The first
ircache web cache bake-off. Technical report, National
Laboratory for Applied Network Research, April 1999.

[32] Squid internet object cache, http://squid.nlanr.net.

[33] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design con-
siderations for distributed caching on the Internet. In
The 19th 1EEE Int. Conf. on Distributed Computing
Systems, May 1999.

[34] J. Touch. The LSAM proxy cache - a multicast dis-
tributed virtual cache. In Proc. of the 3rd Int. WWW
Caching Workshop, June 1998.

[35] V. Valloppillil and K. W. Ross. Cache array rout-
ing protocol vl.0. ftp://ftp.isi.edu/internet-drafts/draft-
vinod-carp-vl-03.txt, Feb. 1998.

[36] C. E. Wills and M. Mikhailov. Towards a better un-
derstanding of Web resources and server responses for
improved caching. In Proc. of the Eighth Int. World
Wide Web Conf., pages 153-165, May 1999.

[37] A. Wolman, G. Voelker, N. Sharma, N. Cardwell,
M. Brown, T. Landray, D. Pinnel, A. Karlin, and
H. Levy. Organization-based analysis of Web-object
sharing and caching. In Proc. of the 2nd USEN1X Syrup.
on lnternet Technologies and Systems, Oct. 1999.

31

