
IEEETRANSACTIONSONCOMPUTERS,VOL.39,NO.4,APRIL199O 447 

Coda: A H ighly Available File System for a 
D istributed Workstation Environment 

MAHADEV SATYANARAYANAN, MEMBER, IEEE, JAMES J. KISTLER, PUNEET KUMAR, 
MARIA E. OKASAKI, ELLEN H. SIEGEL, AND DAVID C. STEERE 

Abstmct-Coda is a file system for a large-scale distributed 
computing environment composed of Unix workstations. It pro- 
vides resiliency to server and network failures through the use of 
two distinct but complementary mechanisms. One mechanism, 
server replication, stores copies of a file at multiple servers. The 
other mechanism, dixonnacted operation, is a mode of execu- 
tion in which a caching site temporarily assumes the role of 
a replication site. Disconnected operation is particularly use- 
ful for supporting portable workstations. The design of Coda 
optimizes for availability and performance, and strives to pro- 
vide the highest degree of consistency attainable in the light 
of these objectives. Measurements from a prototype show that 
the performance cost of providing high availability in Coda is 
reasonable. 

Index Terms- Andrew, availability, caching, disconnected op- 
eration, distributed file system, performance, portable comput- 
ers, scalability, server replication. 

I. INTRODUCTION 

A LOCATION-transparent distributed file system based on 
the Unix’ file system model is a valuable mechanism for 

collaboration between physically dispersed users. This is par- 
ticularly true in a distributed workstation environment where 
the primary activities are education, research, and software 
development. The Andrew File System (AFS) is a highly 
successful realization of such a mechanism for a campus-sized 
user community [9], [15]. Positive experience with AFS has 
motivated the recent work on extending it nationwide [17]. 
The importance of a shared Unix file system for a distributed 
workstation environment is further confirmed by many other 
efforts in industry and academia [16]. 

The work described in this paper arose from our extensive 
experience as implementors and users of AFS over the past 
five years. On  the one hand, we were pleased with the func- 
tionality, performance, and ease of administration of AFS. 
At the same time we were concerned with its vulnerability to 
failures of servers and network components. Such failures can 

Manuscript received July 6, 1989; revised November 19, 1989. This work 
was supported by National Science Foundation Contract CCR-8657907, De. 
fense Advanced Research Projects Agency (Order 4976, Contract F33615. 
87-C-1499), the IBM Corporation (Faculty Development Award and Gradu- 
ate Fellowship), and Digital Equipment Corporation (Equipment Grant). The 
views and conclusions in this document are those of the authors and do not 
represent the official policies of the funding agencies or Carnegie Mellon 
University. 

The authors are with the School of Computer Science, Carnegie Mellon 
University, Pittsburgh, PA 15213. 

IEEE Log Number 8933887. 
’ Unix is a trademark of AT&T. 

seriously inconvenience many users for time periods ranging 
from a few minutes to many hours. At least a few such outages 
occur somewhere in our system every day. 

The Coda File System is a descendant of AFS that is sub- 
stantially more resilient to failures. The ideal that Coda strives 
for is constant data availability, allowing a user to continue 
working regardless of failures elsewhere in the system. Our  
goal is to provide users with the benefits of a shared data 
repository, but to allow them to rely entirely on local resources 
when that repository is partially or totally inaccessible. 

A related goal of Coda is to gracefully integrate the use 
of AFS with portable computers. At present, users manually 
copy relevant files from AFS, use the machine while isolated 
from the network, and manually copy updated files back to 
AFS upon reconnection. These users are effectively perform- 
ing manual caching of files with write-back on reconnection. 
If one views the disconnection from AFS as a deliberately- 
induced failure, it is clear that a mechanism for supporting 
portable machines in isolation is also a mechanism for fault 
tolerance. 

Although this paper focuses on Coda, the problem of data 
availability is not specific to it. Growth in scale and complexity 
inevitably results in more components that can fail, and more 
hardware and software interactions that can manifest them- 
selves as failures. Consequently, the large-scale distributed 
file systems of the future will have to provide continued ac- 
cess to data in the face of temporary failures if they are to 
remain viable. 

In the rest of this paper, we describe the design and imple- 
mentation of Coda. We motivate our design choices in Section 
II, present the design in Sections III-V, and elaborate on the 
key data structures and protocols in Section VI. We describe 
the status and performance of a Coda prototype in Sections 
VII and VIII. We conclude with an examination of related 
research in Section IX and a summary of the paper in Section 
X. 

II. DESIGN RATIONALE 

Three fundamental factors influenced the design of Coda. 
These are 

. our desire to produce a highly scalable system 

. the range of failures we wished to address 

. the need to emulate Unix file semantics. 

In the course of our design, we discovered that the constraints 
imposed by these factors often conflicted with each other. The 

00 1%9340/90/0400-0447$0 1 .OO 0 1990 IEEE 



448 IEEE TRANSACTIONS ON COMPUTERS,  VOL. 39, NO. 4, APRIL 1990 

current design of Coda is therefore a compromise that, in our 
judgment, best suits our usage environment. 

A. Scalability 
A scalable distributed system is one that can easily cope 

with the addition of users and sites. Growth has economic, 
performance, and administrative consequences. Our goal was 
to build a system whose growth would incur as little expense, 
performance degradation, and administrative complexity as 
possible. Since this goal was also the major focus of Coda’s 
ancestor, AFS, we tried to preserve much of its design. 

B. Range of Failures 

In AFS, a small set of trusted servers jointly provide a stor- 
age repository shared by a much larger number of untrusted 
clients. To maximize client-server ratio, most load is borne by 
clients. Only functions essential to integrity or security are per- 
formed by servers. Caching is the key to scalability in AFS. 
The operating system on each client intercepts open and close 
file system calls2 and forwards them to a cache-management 
process called Venus. After a file is opened, read and write 
operations on it bypass Venus. Venus contacts a server only 
on a cache miss on open, or on a close after modification. In 
both cases, the file is transferred in its entirety. Cache coher- 
ence is maintained by a callback mechanism, whereby servers 
notify workstations of changes to cached files. Clients dynam- 
ically determine the location of files on servers and cache this 
information. 

To achieve our goal of continued client operation in the face 
of failures, we had two strategies available to us. The first was 
to use replication across servers to render the shared storage 
repository more reliable. The second was to make each client 
capable of fully autonomous operation if the repository failed. 
Each of these strategies improves availability, but neither is 
adequate alone. 

Enhancing the availability of the shared storage repository 
increases the availability of all shared data. It protects against 
individual server failures and some network failures. Unfor- 
tunately, it does not help if all servers fail, or if all of them 
are inaccessible due to a total partition of the client. A spe- 
cial case of the latter is the use of a portable computer when 
detached from the network. 

The highly dynamic nature of AFS enhances its scalabil- 
ity. There are very few static bindings that require atomic, 
systemwide updates tar AI-S to function correctly. A work- 
station with a small disk can potentially access any file in AFS 
by name. One can move to any other workstation and effort- 
lessly access one’s files from there. Adding a new workstation 
merely involves connecting it to the network and assigning 
it an address. Workstations can be turned off or physically 
relocated at any time without fear of inconveniencing other 
users. Only a small operational staff is required to monitor 
and service the relatively few AFS servers. Backup is needed 
only on the servers, since workstation disks are merely used 
as caches. Files can be easily moved between servers during 
normal operation without inconveniencing users. 

Coda retains many of the features of AFS that contribute 
to its scalability and security: 

Making each client fully autonomous is infeasible. The disk 
storage capacity of a client is a small fraction of the total 
shared data. This strategy is also inconsistent with our model 
of treating each client’s disk merely as a cache. It represents 
a return to the model of isolated personal computers rather 
than a collection of workstations sharing a file system. The 
advantages of mobility, and the ability of any user to use any 
workstation as his own, are lost. Yet temporary autonomy 
seems acceptable for brief periods of time, on the order of 
minutes or hours, while a user is active at a client. 

In the light of these considerations we decided to use a 
combination of the two strategies to cover a broad range of 
failures. Coda uses server replication, or the storing of copies 
of files at multiple servers, to provide a shared storage repos- 
itory of higher availability than AFS. A client relies on server 
replication as long as it remains in contact with at least one 
server. When no server can be contacted, the client resorts 
to disconnected operation, a mode of execution in which the 
client relies solely on cached data. We regard involuntary dis- 
connected operation as a measure of last resort and revert to 
normal operation at the earliest opportunity. A portable client 
that is isolated from the network is effectively operating dis- 
connected. 

. It uses the model of a few trusted servers and many un- 
trusted clients. 

. Clients cache entire tiles on their local disks. From the 
perspective of Coda, whole-file transfer also offers a de- 
gree of intrinsic resiliency. Once a file is cached and open 
at a client, it is immune to server and network failures. 
Caching on local disks is also consistent with our goal of 
supporting portable machines. 

. Cache coherence is maintained by the use of callbacks. 
But, as described later in the paper, the maintenance of 
callbacks is more complex in Coda than in AFS. 

’ Directories are also cached on clients, but modifications to them are 
immediately propagated to servers. For ease of exposition we confine our 
discussion to files in this section. 

. Clients dynamically map files to servers and cache this 
information. 

. It uses token-based authentication and end-to-end encryp- 
tion integrated with its communication mechanism [ 131. 

Our need to handle network failures meant that we had 
to address the difficult issue of consistency guarantees across 
partitions. In the terminology of Davidson et al. [3], we had to 
decide whether to use a pessimistic replication strategy, pro- 
viding strict consistency, or an optimistic strategy, providing 
higher availability. The former class of strategies avoids up- 
date conflicts by restricting modifications to at most one par- 
tition. The latter allows updates in every partition, but detects 
and resolves conflicting updates after they occur. 

We chose to use an optimistic strategy for three reasons. 
First, and most important, such an approach provides higher 
availability. Second, we saw no clean way of supporting 
portable workstations using a pessimistic strategy. Third, it 
is widely believed that write sharing between users is rel- 
atively infrequent in academic Unix environments. Conse- 



SATYANARAYANAN et al.: CODA: A HIGHLY AVAILABLE FILE SYSTEM 449 

quently, conflicting updates are likely to be rare. We guar- 
antee detection and confinement of these conflicts, and try to 
do this as soon after their occurrence as possible. 

The specific replication strategy we chose is an adapta- 
tion of that originally proposed by Locus [ 191. Coda ver- 
sion vectors (CVV’s), similar in concept but distinct in de- 
tail from version vectors described by Parker et al. [lo], are 
used to detect write-write conflicts on individual files. We 
did not choose the more powerful optimistic strategy pro- 
posed by Davidson [2], even though it is capable of detecting 
read- write conflicts across multiple files. We were concerned 
with the complexity of the latter strategy and questioned its 
value in a Unix environment where multifile transactional 
guarantees are absent. We also felt that inconsistencies due 
to conflicting updates should be brought to the attention of 
users rather than being rolled back by the system. 

To summarize, Coda enhances availability both by the repli- 
cation of files across servers, as well as by the ability of clients 
to operate entirely out of their caches. Both mechanisms de- 
pend upon an optimistic strategy for detection of update con- 
flicts in the presence of network partitions. Although these 
mechanisms are complementary, they can be used indepen- 
dently of each other. For example, a Coda installation might 
choose to exploit the benefits of disconnected operation with- 
out incurring the CPU and disk storage overhead of server 
replication. 

C. Unix Emulation 
Our ideal is to make Coda appear to be a giant, failure-proof 

shared Unix file system. Unfortunately, realizing this ideal 
requires strict adherence to one-copy Unix semantics. This 
implies that every modification to every byte of a file has to 
be immediately and permanently visible to every client. Such 
a requirement is obviously in conflict with our goals of scala- 
bility and availability. We have therefore relaxed the accuracy 
with which we emulate Unix semantics, and have settled for 
an approximation that can be implemented in a scalable and 
available manner. We have drawn upon two lessons from AFS 
to develop this approximation, and believe that it will satisfy 
the vast majority of users and applications in our environment. 

I) AFS-I Semantics: The first lesson was that propagat- 
ing changes at the granularity of file opens and closes was 
adequate for virtually all applications in our environment. The 
initial prototype of AFS (AFS-1) revalidated cached files on 
each open, and propagated modified files when they were 
closed. A successful open implied that the resulting copy of 
the file was the latest in the system. 

We can precisely state the currency guarantees offered by 
this model by considering a client C  operating on a file F 
whose custodian is server S. Let latest(F) S) denote the fact 
that the current value of F at C is the same as that at S. Let 
failure(S) denote failure of the current operation by C on S, 
and updated(F, S) denote a successful propagation of c’s 
copy of F to S. Then the currency guarantees provided by 
open and close operations at C  can be expressed as follows: 

close success updated(F, S) 
close failure failure(S) 

2) AFS-2 Semantics: The second lesson we learned was 
that the slightly weaker currency guarantees provided by the 
callback mechanism of the revised AFS design (AFS-2) were 
acceptable. A callback is established as a side effect of file 
fetch or cache validation. It is a guarantee by a server that 
it will notify the client on the first modification of the file 
by any other client. If this notification happens, the server is 
said to have broken the callback.3 Once broken, the callback 
has to be reestablished by the client. But, as a result of a 
network failure, a server’s attempt to break a callback may 
not be noticed by a client. We refer to such an event as a lost 
callback. Because of a lost callback, a client may continue to 
use a cached copy of a file for up to r seconds after the file 
was updated elsewhere. r is a parameter of the system, and 
is typically on the order of a few minutes. 

We can characterize the currency guarantees of AFS with 
callbacks by extending our notation. latest(F) S, t) now de- 
notes the fact that the current value of F at C is the same as 
that at S at some instant in the last t seconds. In particular, 
latest(F) S, 0) means F is currently identical at C  and S. If 
we indicate the loss of a callback from S to C during the 
last t seconds by lostcallback(S, t), and the presence of F in 
C’s cache prior to the current operation by incache( the 
resulting currency guarantees can be stated thus: 
open success latest(F) S, 0) v 

(latest(F, S, T) 
A fostcallback(S, 7) A incache( 

all others as for AFS-1 
3) Coda Semantics: In Coda, the single server S is re- 

placed by a set of servers s. C  maintains the subset 3 of s  
that it was able to contact on the most recent remote oper- 
ation. S is reevaluated at least once every r seconds. When 
S is empty, C  is operating disconnected. The intuitive cur- 
rency guarantee offered by a successful Coda open is that it 
yields the most recent copy of F among the set of currently 
accessible servers. If no server is accessible, the cached copy 
of F is used. A successful close indicates that the file has 
been propagated to the set of currently accessible servers, or 
that no server is available and the file has been marked for 
propagation at the earliest opportunity. 

The use of callbacks and an optimistic replication scheme 
weakens these intuitive currency guarantees. A more precise 
statement of the guarantees can be made by further extension 
of our notation. latest(F, 3, t) now denotes the fact that the 
current value of F at C was the latest across all servers in S at 
some instant in the last t seconds. It also denotes the fact that 
there were no conflicts among the copies of S at that instant. 
lostcallback(s, t) now means that a callback from some mem- 
ber of S to C was lost in the last t seconds. updated(F, S) 
means that the current value F at C was successfully prop- 
agated to all members of S. conflict(F) 3) means that the 
values of F at S are currently in conflict. Using this notation, 

3 Unfortunately the terminology is a little confusing. As used in the AFS 
literature, “callback” is a noun rather than a verb, and is an abbreviation for 
“callback promise.” 

open success latest(F, S) 
open failure failure(S) 



450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990 

the currency guarantees offered by Coda operations can be its members have stale replicas. As a side effect, a callback 
expressed as follows: is established with the preferred server. 

open success (S # 0 A (Zatest(F, S, 0) V (fatest(F, 3, T) 
A lostcallback(3, 7) A incache(F) 

v (S = 0 A incache( 
open failure (3 # 0 A conflict(F) s)) 

V (S = 8 A +zcache(F)) 
close success (S # 0 A updated(F) s)) 

v (S = 0). 
close failure (S # 0 A conflict(F) s)) 

Although we believe that the currency guarantees of Coda 
are adequate for a typical academic or research environment, 
they may be too weak for some applications. Databases are 
a class of applications that we specifically do not attempt to 
support in Coda. Our view is that a database for a large-scale 
distributed environment should be implemented as a separate 
system rather than being built on top of a distributed file 
system. 

III. SERVER REPLICATION 

The unit of replication in Coda is a volume, a set of files 
and directories located on one server and forming a partial 
subtree of the shared name space.4 Each file and directory in 
Coda has a unique low-level file identifier (FID), a compo- 
nent of which identifies the parent volume. All replicas of an 
object have the same FID. 

The set of servers with replicas of a volume constitute its 
volume storage group (VSG). The degree of replication and 
the identity of the replication sites are specified when a volume 
is created and are stored in a volume replication database 
that is present at every server. Although these parameters can 
be changed later, we do not anticipate such changes to be 
frequent. For every volume from which it has cached data, 
Venus (the client cache manager) keeps track of the subset of 
the VSG that is currently accessible. This subset is called the 
accessible volume storage group (AVSG). Different clients 
may have different AVSG’s for the same volume at a given 
instant. In the notation of Section II-C3, the VSG and AVSG 
correspond to s and S, respectively. 

A. Strategy 
The replication strategy we use is a variant of the read-one, 

write-all approach. When servicing a cache miss, a client ob- 
tains data from one member of its AVSG called the preferred 
server. The preferred server can be chosen at random or on 
the basis of performance criteria such as physical proximity, 
server load, or server CPU power. Although data are trans- 
ferred only from one server, the other servers are contacted by 
the client to verify that the preferred server does indeed have 
the latest copy of the data. If this is not the case, the member 
of the AVSG with the latest copy is made the preferred site, 
the data are refetched, and the AVSG is notified that some of 

4 Coda also supports nonreplicated volumes and volumes with read-only 
replicas, a feature inherited from AFS. We restrict our discussion here to 
volumes with read-write replicas. 

When a file is closed after modification it is transferred 
in parallel to all members of the AVSG. This approach is 
simple to implement and maximizes the probability that every 
replication site has current data at all times. Server CPU load 
is minimized because the burden of data propagation is on the 
client rather than the server. This in turn improves scalability, 
since the server CPU is the bottleneck in many distributed file 
systems. 

Since our replication scheme is optimistic, we have to check 
for conflicts on each server operation. We also require that 
server modifications be made in a manner that will enable 
future conflicts to be detected. These issues are further dis- 
cussed in Section VI, which describes the data structures and 
protocols used in server replication. 

At present, a server performs no explicit remote actions 
upon recovery from a crash. Rather, it depends upon clients to 
notify it of stale or conflicting data. Although this lazy strategy 
does not violate our currency guarantees, it does increase the 
chances of a future conflict. A better approach, which we plan 
to adopt in the future, is for a recovering server to contact 
other servers to bring itself up to date. 

B. Cache Coherence 
The Coda currency guarantees stated in Section II-C require 

that a client recognize three kinds of events no later than r 
seconds after their occurrence: 

. enlargement of an AVSG (implying accessibility of a pre- 
viously inaccessible server) 

. shrinking of an AVSG (implying inaccessibility of a pre- 
viously accessible server) 

. a lost callback event. 

Venus detects enlargement of an AVSG by trying to con- 
tact missing members of the VSG once every r seconds. If 
an AVSG enlarges, cached objects from the volume may no 
longer be the latest copy in the new AVSG. Hence, the client 
drops callbacks on these objects. The next reference to any of 
these objects will cause the enlarged AVSG to be contacted 
and a newer copy to be fetched (if one exists). 

Venus detects shrinking of an AVSG by probing its members 
once every r seconds. Shrinking is detected earlier if a normal 
operation on the AVSG fails. If the shrinking is caused by 
loss of the preferred server, Venus drops its callbacks from 
it. Otherwise, they remain valid. It is important to note that 
Venus only probes those servers from which it has cached 
data; it does not probe other servers, nor does it ever probe 
other clients. This fact, combined with the relative infrequency 
of probes (7 being ten minutes in our current implementation), 
ensures that probes are not an obstacle to the scalability of the 
system. 

If Venus were to place callbacks at all members of its 
AVSG, the probe to detect AVSG shrinking would also de- 
tect lost callback events. Since maintaining callback state at 
all servers is expensive, Venus only maintains a callback at 
the preferred server. The probe to the preferred server de- 
tects lost callback events from it. 



SATYANARAYANAN et al.: CODA: A HIGHLY AVAILABLE FILE SYSTEM 451 

But maintaining callbacks only at one server introduces a 
new problem. The preferred server for one client need not 
necessarily be in the AVSG of another client.5 Hence, an 
update of an object by the second client may not cause a 
callback for the object at the first client to be broken. 

To detect updates missed by its preferred server, each probe 
by Venus requests the volume version vector (volume CVV) 
for every volume from which it has cached data. A volume 
CVV is similar to a file or directory CVV, but summarizes 
update information on the entire volume. It is updated as a 
side-effect of every operation that modifies the volume. A 
mismatch in the volume CVV’s indicates that some AVSG 
members missed an update. Although the missed update may 
not have been to an object in the cache, Venus conservatively 
drops it callbacks on all objects from the volume. 

C. Parallel Communication 
Because of server replication, each remote operation in 

Coda typically requires multiple sites to be contacted. If this 
were done serially, latency would be degraded intolerably. 
Venus therefore communicates with replication sites in paral- 
lel, using the MuftiRPC parallel remote procedure call mech- 
anism [ 141. The original version of MultiRPC provided logical 
parallelism but did not use multicast capability at the media 
level. Since we were particularly concerned about the latency 
and network load caused by shipping large files to multiple 
sites, we have extended MultiRPC to use hardware multicast. 
But we view multicast as an optimization rather than a funda- 
mental requirement, and Coda retains the ability to use non- 
multicast MultiRPC. 

IV. DISCONNECTED OPERATION 

Disconnected operation begins at a client when no member 
of a VSG is accessible. Clients view it as a temporary state and 
revert to normal operation at the earliest opportunity. A client 
may be operating disconnected with respect to some volumes, 
but not others. Disconnected operation is transparent to a user 
unless a cache miss occurs. Return to normal operation is also 
transparent, unless a conflict is detected. 

A. Cache Misses 
In normal operation, a cache miss is transparent to the user, 

and only imposes a performance penalty. But in disconnected 
operation a miss impedes computation until normal operation 
is resumed or until the user aborts the corresponding file sys- 
tem call. Consequently it is important to avoid cache misses 
during disconnected operation. 

During brief failures, the normal LRU caching policy of 
Venus may be adequate to avoid cache misses to a disconnected 
volume. This is most likely to be true if a user is editing 
or programming and has been engaged in this activity long 
enough to till his cache with relevant files. But it is unlikely 
that a client could operate disconnected for an extended period 
of time without generating references to files that are not in 
the cache. 

5 This can 
nication. 

happen, for example, due to nontransitivity of network 

Coda therefore allows a user to specify a prioritized list 
of files and directories that Venus should strive to retain in 
the cache. Objects of the highest priority level are sticky and 
must be retained at all times. As long as the local disk is large 
enough to accommodate all sticky files and directories, the 
user is assured that he can always access them. Since it is often 
difficult to know exactly what file references are generated 
by a certain set of high-level user actions, Coda provides the 
ability for a user to bracket a sequence of high-level actions 
and for Venus to note the file references generated during 
these actions. 

B. Reintegration 
When disconnected operation ends, a process of reinte- 

gration begins. For each cached file or directory that has 
been created, deleted, or modified during disconnected op- 
eration, Venus executes a sequence of update operations to 
make AVSG replicas identical to the cached copy. Reintegra- 
tion proceeds top-down, from the root of each cached volume 
to its leaves. 

Update operations during reintegration may fail for one 
of two reasons. First, there may be no authentication tokens 
which Venus can use to securely communicate with AVSG 
members. Second, inconsistencies may be detected due to up- 
dates to AVSG replicas. Given our model of servers rather 
than clients being dependable storage repositories, we felt that 
the proper approach to handling these situations was to find 
a temporary home on servers for the data in question and to 
rely on a user to resolve the problem later. 

The temporary repository is realized as a covolume for ev- 
ery replica of every volume in Coda. Covolumes are similar 
in spirit to lost +found directories in Unix. Having a covol- 
ume per replica allows us to reintegrate as soon as any VSG 
site becomes available. The storage overhead of this approach 
is usually small, since a covolume is almost always empty. 

C. Voluntary Disconnection 
Disconnected operation can also occur voluntarily, when 

a client is deliberately disconnected from the network. This 
might happen, for instance, when a user takes a portable ma- 
chine with him on his travels. With a large disk cache the 
user can operate isolated from Coda servers for an extended 
period of time. The file name space he sees is unchanged, 
but he has to be careful to restrict his references to cached 
files and directories. From time to time, he may reconnect his 
client to the network, thereby propagating his modifications 
to Coda servers. 

By providing the ability to move seamlessly between zones 
of normal and disconnected operation, Coda may be able to 
simplify the use of cordless network technologies such as cel- 
lular telephone, packet radio, or infrared communication in 
distributed file systems. Although such technologies provide 
client mobility, they often have intrinsic limitations such as 
short range, inability to operate inside buildings with steel 
frames, or line-of-sight constraints. These shortcomings are 
reduced in significance if clients are capable of autonomous 
operation. 



452 

V. CONFLICT RESOLUTION 

When a conflict is detected, Coda first attempts to resolve it 
automatically. Since Unix files are untyped byte streams there 
is, in general, no information to automate their resolution. Di- 
rectories, on the other hand, are objects whose semantics are 
completely known. Consequently, their resolution can some- 
times be automated. If automated resolution is not possible, 
Coda marks all accessible replicas of the object inconsistent. 
This ensures damage containment since normal operations on 
these replicas will fail. A user will have to manually resolve 
the problem using a repair tool. 

A. Automated Resolution 
The semantics of a Coda directory is that it is a list of 

(name, FZD) pairs with two modification operations, create 
and delete, that can act on the list. Status modifications, such 
as protection changes, can also be made on the directory. The 
resolution procedure for Coda directories is similar to that of 
Locus [6], [19]. There are three classes of conflicts involving 
directories that are not amenable to automated resolution. One 
class, updutelupdute conflict, is exemplified by protection 
modifications to partitioned replicas of a directory. The second 
class, removelupdute conflict, involves updating an object 
in one partition and removing it in another. The third class, 
namelname conflict, arises when new objects with identical 
names are created in partitioned replicas of a directory. All 
other directory conflicts can be automatically resolved by a 
compensating sequence of create or delete operations. 

B. Repair Tool 
The Coda repair tool allows users to manually resolve con- 

flicts. It uses a special interface to Venus so that file requests 
from the tool are distinguishable from normal file requests. 
This enables the tool to overwrite inconsistent files and to per- 
form directory operations on inconsistent directories, subject 
to normal access restrictions. To assist the user, each replica 
of an inconsistent object is made available in read-only form. 
Since these read-only copies are not themselves inconsistent, 
normal Unix applications such as editors may be used to ex- 
amine them. 

VI. REPLICA MANAGEMENT 

We now examine replica management at the next level of 
detail, focusing on the data structures and protocols used in 
server replication. We begin with an abstract characterization 
of replica states in Section VI-A, and then describe an ap- 
proximation that can be efficiently realized in Section VI-B. 
This approximation is conservative, in that it may occasion- 
ally indicate a conflict where none exists but will never fail to 
detect a genuine conflict. Finally, we describe the protocols 
that modify replicas in Section VI-C. 

A. State Characterization 
Each modification on a server can be conceptually tagged 

with a unique storeid by the client performing the operation. 
If a server were to maintain a chronological sequence of the 
storeids of an object, it would possess the entire update his- 
tory of the object at that server. 

The latest storeid (LSID) in the update history of a replica 
can be used to characterize its state relative to another replica. 
Two replicas, A and B, are said to be equal if their LSID’s are 
identical. Equality represents a situation where the most recent 
update to both replicas was the same. If B’s LSID is distinct 
from A’s LSID but is present in A’s history, the replica at A 
is said to dominate the replica at B. This situation may also 
be described by saying B is submissive to A. In this situation, 
both sites have received a common update at some point in 
the past, but the submissive site has received no updates there- 
after. The replicas are said to be inconsistent if neither A’s 
LSID nor B’s LSID is present in the other’s update history. 
Inconsistency represents a situation where updates were made 
to a replica by a client that was ignorant of updates made to 
another replica. 

In the case of files, a submissive replica directly corre- 
sponds to our intuitive notion of stale data. Hence, Coda al- 
ways provides access to the dominant replica of a file among a 
set of accessible replicas. An inconsistency among file repli- 
cas arises from genuine update conflicts. In such a situation, 
Coda immediately marks all accessible replicas in a manner 
that causes normal operations on them to fail. 

The situation is more complex in the case of directories, 
because the update history of a directory does not capture ac- 
tivity in its children. Consequently, update histories can only 
be used conservatively in characterizing the states of direc- 
tory replicas. Replicas whose update histories are equal are 
indeed identical, but replicas with unequal update histories are 
potentially in conflict. 

B. State Representation 
Since it would be impractical to maintain the entire update 

history of a replica, Coda maintains an approximation to it. 
The approximation consists of the current length of the update 
history and its LSID. The LSID is composed of an identifier 
unique to each client, concatenated with a monotonically in- 
creasing integer.(j A replication site also maintains an estimate 
of the length of the update history of every other replica. A 
vector containing these length estimates constitutes the CVV at 
this site. An estimate is always conservative. In other words, 
a site may fail to notice an update made to a replica, but it 
will never erroneously assume that the replica was updated. 
A site’s estimate of updates to itself will be accurate as long 
it has the ability to make local modifications in a manner that 
is atomic and permanent. 

Coda compares the states of replicas using their LSID’s 
and CVV’s. When two replicas, A and B, are compared the 
outcome is constrained to be one of four possibilities: 

. strong equality, where LSIDA is identical to LSIDa, and 
CVVA is identical to CVVa. 

l weak equality, where LSIDA is identical to LSIDa, but 
CVVA and CVVB are not identical. 

. dominance/submission, where LSIDA is different from 
LSIDe, and every element of CVVA is greater than or equal 
to the corresponding element of CVVB (or vice versa). 

these entities are the IP address of a workstation 



SATYANARAYANANetal. :  CODA:AHIGHLYAVAILABLEFILESYSTEM 453 

. inconsistency, where LSIDA is different from LSIDB, 
and some elements of CVVA are greater than, but other ele- 
ments are less than, the corresponding elements of CVVe. 

Strong equality corresponds to a situation where a client 
successfully updates A and B, and each replica is certain of 
the other’s update. Weak equality arises when the update suc- 
ceeds at both sites, but this fact is not known to both replicas. 
Together, strong and weak equality correspond to the notion of 
replica equality defined in terms of update histories in Section 
VI-A. The pairwise comparisons defined here can be easily 
generalized to set comparisons. 

C. State Transformation 
There are four classes of operations in Coda that can change 

the state of a server replica: 
. update extends the update history by a new, hitherto 

unused, storeid 
. force logically replays those updates made to a dominant 

site that are missing from a submissive one 
. repair resembles update, but is used to return a set of 

replicas previously marked inconsistent to normal use. 
. migrate saves copies of objects involved in unsuccess- 

ful updates resulting from disconnected operation for future 
repair. 

We describe the details of these classes of operations in the 
following sections. When we refer to file or directory status 
in these sections, we include the CVV and LSID. 

I) Update: Update is, by far, the most frequent class of 
mutating operation. Every common client-server interaction 
that involves modification of data or status at the server falls 
into this class. Examples include file store, file and directory 
creation and deletion, protection change, and link creation. 
In updates to existing objects, the protocol consists of two 
phases, with the client acting as initiator and coordinator. In 
the first phase, each AVSG site checks the LSID and CVV 
presented by the client, If the check succeeds, the site performs 
the requested semantic action such as the transfer of data in 
the case of a file store. In the second phase, each AVSG site 
records the client’s view of which sites executed the previous 
phase successfully. In updates where a new object has to be 
created, these two phases are preceded by a phase where a 
new FID is allocated by the preferred server. 

The check at an AVSG site in the first phase succeeds for 
files if the cached and server copies are equal or if the cached 
copy dominates. Cached-copy dominance is acceptable for 
files since an update for a submissive site is logically equiv- 
alent to a force that brings its replica into equality followed 
by the actual update. Since new file data merely overwrite 
existing data, we omit the force. For directories, the check 
succeeds only when the two copies are equal. An unsuccess- 
ful check of either type of object by any AVSG site causes the 
client to pause the operation and invoke the resolution sub- 
system at the AVSG. If the resolution subsystem is able to 
automatically fix the problem, the client restarts the paused 
operation. Otherwise the operation is aborted and an error 
is returned to the user. A successful check causes the server 
to atomically perform the semantic action, and to commit a 
new LSID (sent by the client in the first phase) and a tentative 

CVV that is identical to the client’s except for one additional 
update at this server. 

The client examines the replies from the first phase and 
distributes a final CVV. The latter is identical to the CVV of 
the first phase except that it indicates one additional update 
at each responding server. Servers that receive this informa- 
tion replace their tentative CVV’s by the final CVV. At an 
AVSG site that crashed or was partitioned between the first 
and second phases, the tentative CVV remains unchanged. 

Since update is frequent, it is important to optimize its per- 
formance. The total number of messages and latency are re- 
duced by communicating with AVSG members in parallel. 
Latency is further reduced by having Venus return control to 
the user at the end of the first phase. Server throughput is in- 
creased by the use of batching and piggybacking in the second 
phase. 

2) Force: A force operation is a server-to-server interac- 
tion, with a client playing no part except to set in motion a 
sequence of events that leads to the force. For example, a 
force operation may occur as a result of Venus notifying its 
AVSG that it has detected an inequality during a file fetch. It 
may also occur when the system determines that a directory 
conflict can be resolved by a sequence of forces. Force oper- 
ations may also arise on server crash recovery, when a server 
brings itself up to date. 

A force of a file merely consists of atomically copying its 
data and status from the dominant to the submissive site. But 
a force of a directory is more complex. The ideal operation 
would be one that rendered the subtrees rooted at the directory 
replicas identical. The subtrees would be exclusively locked 
for the entire duration of the force, and all changes would 
be atomic. Unfortunately this is impractical, especially if the 
subtrees in question are deep. Consequently, our approach is 
to lock, and atomically apply changes, a directory at a time. 

This approach does not violate our ability to detect genuine 
conflicts for two reasons. First, directories only contain infor- 
mation about immediate descendants. Second, when creating 
an entry for a new object, we first make it point to a runt 
replica which has a CVV that will always be submissive. A 
failure to the forcing server could occur after the creation, but 
before the force, of the runt. But any subsequent attempt to 
access the runt would result in detection of inequality. 

3) Repair and Migrate: Both repair and migrate are rel- 
atively rare operations. A repair operation is used to fix in- 
consistency and proceeds in two phases, similar to an update. 
A migrate operation is used to place an object in conflict at 
the end of disconnected operation in a covolume on a server. 
The server replica is marked inconsistent, and accesses to the 
object will fail until it is repaired. 

VII. IMPLEMENTATION STATUS 

Our goal in implementing Coda is to explore its overall 
feasibility and to obtain feedback on its design. The proto- 
type implementation runs on IBM RT’s, and is functional in 
most respects. One can sit down at a Coda client and ex- 
ecute Unix applications without recompilation or relinking. 
Execution continues transparently when contact is lost with 
a server due to a crash or network failure. In the absence 



454 IEEE TRANSACTIONS ON COMPUTERS,  VOL. 39, NO. 4, APRIL 1990 

of failures, using a Coda client feels no different from using 
an AFS client. The primary areas where our implementation 
is incomplete are conflict resolution, the implementation of 
sticky files, and certain aspects of reintegration. We expect to 
complete these shortly. 

We use the Camelot transaction facility [ 181 to obtain atom- 
icity and permanence of server operations. Our use of Camelot 
is restricted to single-site, top-level transactions. We do not 
use nested or distributed transactions in our implementation. 
To reduce the latency caused by synchronous writes to the 
Camelot log, we have built a battery-backed ramdisk for each 
of our servers. 

To test the resiliency of the system we have built an emu- 
lator that induces controlled and repeatable failures in Coda. 
It consists of an interactive front-end that runs on a single 
machine, and emulation routines that are invoked by the com- 
munication package at every Venus and file server. 

VIII. PERFORMANCE EVALUATION 

In this section, we present measurements that reflect on 
the design and implementation of the Coda prototype. Our 
discussion focuses on four questions: 

. What is the effect of server replication? 

. How does Coda behave under load? 

. How important is multicast? 

. How useful is a ramdisk for logging? 

We have spent little effort until now on tuning the low-level 
aspects of our implementation. It is likely that a refined im- 
plementation will show noticeable performance improvement. 
This should be kept in mind in interpreting the results reported 
here. 

A. Methodology and Configuration 
Our evaluation is based on the Andrew benchmark [7], 

which operates on a collection of files constituting the source 
code of a Unix application. An instance of the benchmark gen- 
erates as much network and server load as five typical AFS 
users. We use the term load to refer to the number of clients 
simultaneously running this benchmark. 

The input to the benchmark is a subtree of 70 files to- 
talling 200 kbytes in size. There are five distinct phases in the 
benchmark: MakeDir, which constructs a target subtree that 
is identical in structure to the source subtree; Copy, which 
copies every file from the source subtree to the target sub- 
tree; ScanDir, which recursively traverses the target subtree 
and examines the status of every file in it; ReadAll, which 
scans every byte of every file in the target subtree twice; and 
Make, which compiles and links all the files in the target 
subtree. The ScanDir and ReadAll phases reap the most ben- 
efit from caching, and hence show the least variation in our 
experiments. 

The clients and servers used in our experiments were 
IBM RT/APC’s with 12 megabytes of main memory and 70 
megabyte disks, running the Mach operating system, and com- 
municating on an Ethernet with no intervening routers. Each 
server had an additional 400 megabyte disk on which Coda 
volumes were stored. Each experiment was repeated at least 

three times, with careful experimental control. In no case was 
the variance in any measured quantity more than a few percent 
of the corresponding mean. 

Our reference point is Coda replicated at three servers 
with Ethernet multicast enabled, a ramdisk at each server 
for the Camelot log, and a warm cache.7 This configura- 
tion is labeled “Coda:3” in the graphs. For comparison, 
we also ran experiments on the same hardware and oper- 
ating system with Coda replicated at two and one servers 
(“Coda:2” and “Coda: 1,” respectively), with Coda non- 
replicated (“Coda:NoRep”), with the current release of AFS 
(“AFS”), and with the local Unix file system of a client 
(“Unix”). 

B. Effect of Server Replication 
In the absence of failures, we would like Coda’s perfor- 

mance to be minimally affected by its high availability mecha- 
nisms. Server replication is the primary source of performance 
degradation, since it involves a more complex protocol as well 
as data transfer to multiple sites. Camelot is another potential 
source of performance degradation. 

Fig. 1 shows the effect of server replication. Without repli- 
cation, Coda takes 2 1% longer than the local Unix file system 
to run the benchmark. This is essentially the same as that of 
the current production version of AFS. With replication at 
one, two, and three servers Coda takes 22%, 26%, and 27% 
longer than Unix. 

As Table I shows, the Copy phase of the benchmark is most 
affected by replication since it benefits least from caching. On 
a nonreplicated Coda volume, this phase takes 73% longer 
than on Unix. On a volume replicated at one, two, and three 
servers it takes 91%, 109%, and 118% longer. For compari- 
son, AFS takes 82% longer. Table I also shows that the Scan- 
Dir phase is noticeably longer in Coda than in AFS. This is 
because the Coda cache manager is a user process, while the 
AFS cache manager is inside the kernel. Consequently, Coda 
incurs additional overhead in translating a pathname, even if 
valid cached copies of all components of the pathname are 
cached. 

C. Behavior under Load 

How does Coda perform when multiple workstations use it 
simultaneously? Fig. 2 and Table II show the total elapsed time 
of the benchmark as a function of load. As load is increased 
from 1 to 10, the time for the benchmark increases from 100% 
to 170%. As mentioned earlier, one load unit roughly corre- 
sponds to five typical AFS users. In contrast, the benchmark 
time for AFS only increases from 100% to 116% as load is 
increased from 1 to 10. 

Server CPU utilization is the primary contributor to the 
difference in behavior between Coda and AFS under load. 
Three factors contribute to increased server CPU utilization 
in Coda. The first factor is, of course, the overhead due to 
replication. The second is our use of Camelot. The third is 
the lack of tuning of the Coda implementation. 

7 

the 
Our measurements show that the main effect of a cold cache 
time of the Copy phase by 23% at a load of one. 

is to lengthen 



SATYANAIUYANAN et al.: CODA: A HIGHLY AVAILABLE FILE SYSTEM 455 

Unix AFS Coda: non-rep Coda: I Coda: 2 coda: 3 

Fig. 1. Effect of replication on elapsed time. This graph shows the total 
elapsed time of the Andrew benchmark at a load of one as a function of 
varying the degree of server replication. It also compares Coda to AFS 
and Unix. These data are presented in more detail in Table I. 

TABLE I 
EFFECT OF REPLICATION O N  ELAPSED TIME 

Configuration Load Units MakeDir COPY ScanDir ReadAll Make Total 

coda:3 I 5 (1) 48 (1) 33 (1) 52 (1) 248 (5) 386 (5) 

Coda: 2 1 5 (1) 46 (2) 32 (1) 52 (1) 247 (1) 384 (3) 

Coda: 1 1 5 (0) 42 (1) 32~ 52 (1) 242 (2) 373 (3) 

Coda: NoRep I 4 (01 38 (1) 32 (0) 52 (1) 241(l) 368 (2) 

AFS 1 7 (3) 40 (1) 27 (2) 53 (0) 242 (4) 369 (7) 

UlliX 1 5 (2) 22 (1) 21 (1) 36 (1) 221(l) 305 (1) 

This table presents the elapsed time of the phases of the Andrew benchmark for a variety of 
configurations. Each time reported is in seconds, and is the mean of three trials. Numbers in parentheses are 
standard deviations. 

Fig. 3 shows the relative contributions of each of these fac- 
tors. It presents the total number of server CPU seconds used 
in the benchmark as a function of load for four different con- 
figurations. The overhead due to replication is the difference 
between the curves labeled “Coda:3” and “Coda: NoRep.” 
The overhead due to Camelot is the difference between the 
curves labeled “Coda: NoRep” and “Coda: NoCam.” The 
latter curve corresponds to the configuration “Coda: NoRep” 
in which we substituted a dummy transactional virtual memory 
package for Camelot. The dummy had an interface identical to 
Camelot but incurred zero overhead on every Camelot oper- 
ation other than transaction commit. For the latter operation, 
the dummy performed a write system call with an amount of 
data corresponding to the average amount of data logged dur- 
ing a Camelot transaction in Coda.* The curve thus indicates 
the expected performance of Coda for nonreplicated data if a 
low-overhead transactional system were to be used in lieu of 
Camelot. The overhead due to lack of tuning in Coda is the 
difference between the curves labeled “Coda:NoCam” and 
“AFS. ” 

Linear regression fits for the four configurations indicate 
slopes of 36.7, 28.5, 21.7, and 18.0 s per load unit, re- 
spectively. In other words, each additional load unit increases 

s Although a Unix write is only synchronous with the copying of data to 
a kernel buffer, the comparison is fair because the Camelot tog was on a 
ramdisk for our experiments. 

server CPU utilization by these amounts in these configura- 
tions. The correlation coefficient is greater than 0.99 in each 
case, indicating that a linear model is indeed an excellent fit 
over this range of load. 

D. Effect of Multicast 
Early in our design we debated the importance of multi- 

cast, perceiving both advantages and disadvantages in its use. 
To quantify the contribution due to multicast we repeated the 
load experiment with multicast turned off. Clients and servers 
communicated via the nonmulticast version of MultiRPC for 
this experiment. 

Multicast is beneficial in two ways. It reduces the latency 
of storing large files, and it reduces network load. Since the 
Andrew benchmark does not involve very large files, we did 
not observe a substantial improvement in latency due to mul- 
ticast. But we did observe substantial reduction in network 
load. Fig. 4 shows the total number of bytes transmitted as 
a function of load during the running of the benchmark. AS 
one would expect for a replication factor of 3, multicast re- 
duces the number of bytes transmitted by about two-thirds. 
Fig. 5 shows the corresponding number of packets transmit- 
ted. The improvement due to multicast is less dramatic than 
in Fig. 4 because many small nonmulticast control packets are 
transmitted as part of the multicast file transfer protocol. 



456 IEEE TRANSACTIONS ON COMPUTERS,  VOL. 39, NO. 4, APRIL 1990 

0 2 4 6 8 IO 
Load “nld’ 

Fig. 2. Effect of load on elapsed time. This graph shows the total elapsed 
t ime for the benchmark as a function of load. Table II presents the same 
information in greater detail. 

TABLE II 
EFFECT OF LOAD ON ELAPSED TIME 

Configuration 

:clda: 3 

Load Units MakeDir COPY 

1 5(l) 48 (1) 
2 6(l) 51 (1) 
3 8 (21 56 (5) 
5 11m 83 (7) 
7 15 (2) 114 (5) 
10 30 (1) 170 (3) 

7 (3) 40 (1) 
‘5(l) 41 (11 
6(l) 46 (2) 
6(l) 44 (1) 
8(I) 52 (1) 
10 (2) 65 (1) 

~_ 
ScanDir 

33 (1) 
32 (0) 
32 (0) 
34 (0) 
33 (0) 
34 (0) 

27 (2) 
27 (0) 
27 (1) 
27 (0) 
27 (1) 
27 (0) 

ReadAll Make Total 

52 to 
52 (1) 
51 (0) 
54 (0) 
53 (0) 
53 (0) 

248 (5) 386 (5) 
251 (6) 391 (4) 
267 (5) 414 (5) 
278 (8) 460 (7) 
313 (4) 529 (3) 
369 (9) 657 (8) 

53 (0) 242 (4) 369 (7) 
54 (0) 243 (1) 369 (1) 
54 (0) 247 (1) 379 (2) 
53 (0) 251 (2) 382 (2) 

53 (1) 259 (0) 399 (1) 
52 (0) 275 (2) 429 (3) 

This table compares the running t ime of the phases of the Andrew benchmark for Coda replicated at three 
servers to AFS. Each t ime reported is in seconds, and is the mean of three trials. Numbers in parentheses are 
standard deviations. 

10 12 
Load Units 

Fig. 3. Effect of load on server CPU utilization. This graph shows to- 
tal number of server CPU seconds used as a function of load in run- 
ning the benchmark. The configuration corresponding to the curve labeled 
“Coda:NoCam” is described in the text of Section VIII-C. 



SATYANARAYANANetol. :  CODA:AHIGHLYAVAILABLEFILESYSTEM 457 

Fig. 4. Effect of Multicast on bytes transmitted. 

0 2 4 6 8 10 12 
Load Units 

Fig. 5. Effect of Multicast on packets transmitted. 

E. Contribution of Ramdisk 
The function of the ramdisk is to reduce the cost of log 

forces in Camelot, thereby reducing the latency of update op- 
erations. Since the MakeDir and Copy phases of the bench- 
mark involve the most updates, their combined running time is 
an indicator of the contribution of the ramdisk. We measured 
these times for two configurations: one in which Camelot uses 
a raw disk partition for a log, and the other where it uses a 
ramdisk. The data show that it takes 58 s in the former case 
and 53 s in the latter, a reduction of about 9%. 

to replica management and have therefore had little influence 
on Coda. 

The exception is Locus, originally developed as a research 
prototype at UCLA and now marketed by Locus Computing 
Corporation, There are significant differences in the research 
and commercial versions of Locus. Most importantly, opti- 
mistic replication is only used in the research version of Lo- 
cus. A less ambitious primary-site replication scheme is used 
in the commercial version. In the rest of this section, the term 
“Locus” specifically refers to the research version. 

IX. RELATED WORK Coda uses three ideas from Locus: 
The system most closely related to Coda is undoubtedly its 

ancestor, AFS. Coda strives to preserve the virtues of AFS 
while significantly enhancing its availability. The specific de- 
sign decisions inherited from AFS have been described in 
Section II-A. 

Data availability has been the topic of many research efforts 
in the last decade. A few of these have been experimental 
projects to provide high availability in distributed file systems. 
Examples of such projects include Violet [4], [5], RNFS [8] 
(based on ISIS [l]), Saguaro [12], and Locus [19], [ll]. All 
of these, with one exception, have used a pessimistic approach 

. the view that optimistic replication is acceptable in a Unix 
environment 

. the use of version vectors for detecting conflicts 

. the use of Unix directory semantics to partially automate 
resolution. 

But there are major differences between the two systems, the 
most significant of which are the following. 

. Scalability and security are fundamental goals in Coda, 
but not in Locus. 



458 

. Only Coda explicitly addresses the use of portable com- 
puters . 

. Coda is based on the client-server model, while Locus 
assumes a peer model. 

. Coda integrates the use of two different mechanisms, 
whole-file caching and replication, while Locus relies 
solely on replication. 

. Coda clients directly update server replicas in parallel. A 
Locus usage site updates a single replication site which 
then notifies other replication sites. The latter sites asyn- 
chronously update themselves from the first replication 
site. 

. Coda provides an approximation to Unix semantics. Lo- 
cus provides an exact emulation of Unix semantics that 
is less scalable and considerably more complex to imple- 
ment . 

The differences between Coda and Locus can be traced 
to their fundamentally different views of distributed comput- 
ing systems. Locus was designed in the early 1980’s, prior 
to the advent of workstations, when distributed systems typi- 
cally consisted of a few sites. Coda, in contrast, is specifically 
designed for distributed workstation environments which are 
already one to two orders of magnitude larger in scale. This 
difference in scale is the origin of virtually every design dif- 
ference between Coda and Locus. 

Coda uses a highly dynamic mechanism, caching, to reduce 
network and server load, to support user mobility, and to en- 
able the addition and removal of clients at will. The more static 
mechanism, replication, is only used among the far fewer 
number of servers. Clients only have to keep track of the 
accessibility of servers, not of other clients. Updating server 
replicas directly by clients reduces total server CPU load, the 
resource most widely reported to be the performance bottle- 
neck in large-scale distributed file systems. In contrast, we do 
not see how the strategies of Locus can be easily adapted for 
use in a large-scale distributed environment. 

A performance comparison between Coda and Locus would 
be valuable in understanding the merits of the two systems. 
But in spite of the voluminous literature on Locus, there is no 
quantitative assessment of the performance implications of its 
high availability mechanisms. 

X. CONCLUSION 

Our goal in building Coda is to develop a distributed file 
system that retains the positive characteristics of AFS while 
providing substantially better availability. In this paper, we 
have shown how these goals have been achieved through the 
use of two complementary mechanisms, server replication and 
disconnected operation. We have also shown how discon- 
nected operation can be used to support portable workstations. 

Although Coda is far from maturity, our initial experience 
with it reflects favorably on its design. Performance measure- 
ments from the Coda prototype are promising, although they 
also reveal areas where further improvement is possible. We 
believe that a well-tuned version of Coda will indeed meet its 
goal of providing high availability without serious loss of per- 
formance, scalability, or security. A general question about 

IEEE TRANSACTIONS ON COMPUTERS,  VOL. 39, NO. 4, APRIL 1990 

optimistic replication schemes that remains open is whether 
users will indeed be willing to tolerate occasional conflicts 
in return for higher availability. Only actual experience will 
provide the answer to this. 

ACKNOWLEDGMENT 

We thank E. Cooper and L. Mummert  for their useful com- 
ments on this paper, M. Benarrosh and K. Ginther-Webster 
for finding many elusive Locus documents, the members of 
the Camelot group for helping us use their system, and the 
AFS group for providing us with the software base on which 
we have built Coda. 

111 

I4 

t31 

[41 

151 

El 

[71 

181 

[91 

UOI 

t111 

WI 

[I31 

1141 

1151 

1161 

P71 

U81 

1191 

REFERENCES 

K. P. Birman and T. A. Joseph, “Reliable communication in the pres- 
ence of failures,” ACM Trans. Comput. Syst., vol. 5, no. 1, Feb. 
1987. 
S. B. Davidson, “Optimism and consistency in partitioned distributed 
database systems,” ACM Trans. Database Syst., vol. 9, no. 3, Sept. 
1984. 
S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in 
partitioned networks,” ACM Comput. Surveys, vol. 17, no. 3, Sept. 
1985. 
D. K. Clifford, “Violet, An experimental decentralized system,” Tech. 
Rep. CSL-79-12, Xerox Corp., Palo Alto Research Center, Sept. 1979. 
D. K. Gifford, “Weighted voting for replicated data,” Tech. Rep. 
CSL-79-14, Xerox Corp., Palo Alto Research Center, Sept. 1979. 
R. G. Guy, II, “A  replicated filesystem design for a distributed Unix 
system,” Master Thesis, Dep. Comput. Sci., Univ. of California, Los 
Angeles, CA, 1987. 
J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya- 
narayanan, R. N. Sidebotham, and M. J. West, “Scale and perfor- 
mance in a distributed file system,” ACM Trans. Comput. Syst., 
vol. 6, no. 1, Feb. 1988. 
K. Marzullo and F. Schmuck, ‘Supplying high availability with a stan- 
dard network tile system, ” in Proc. 8th Int. Conf. Distributed Com- 
put. Syst., San Jose, CA, June, 1988. 
J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. 
S. Rosenthal, and F. D. Smith, “Andrew: A  distributed personal com- 
puting environment,” Commun. ACM, vol. 29, no. 3, Mar. 1986. 
D. S. Parker, Jr., G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, 
E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline, “De- 
tection of mutual inconsistency in distributed systems,” IEEE Trans. 
Software Eng., vol. SE-9, no. 3, May 1983. 
G. J. Popek and B. J. Walker, The LOCUS Distributed System Ar- 
chitecture. Cambridge, MA:  MIT Press, 1985. 
T. Purdin, “Enhancing file availability in distributed systems (The 
Saguaro file system),” Ph.D. dissertation, University of Arizona, 
1987. 
M. Satyanarayanan, “Integrating security in a large distributed sys- 
tem,” ACM Trans. Comput. Syst., vol. 7, no. 3, Aug. 1989. 
M. Satyanarayanan and E. H. Siegel, “Parallel communication in a 
large distributed environment,” IEEE Trans. Comput., vol. 39, pp. 
328-348, Mar. 1990. 
M. Satyanarayanan, J. H. Howard, D. N. Nichols, R. N. Sidebotham, 
A. Z. Spector, and M. J. West, “The ITC distributed file system: 
Principles and design, ” in Proc. 10th ACM Symp. Oper. Syst. Prin- 
ciples, Orcas Island, Dec. 1985. 
M. Satyanarayanan, “A  survey of distributed tile systems,” in Annu. 
Rev. Comput. Sci., J. F. Traub, B. Grosz, B. Lampson, N. J. Nils- 
son, Eds., Annual Reviews, Inc., 1989. Also available as Tech. Rep. 
CMU-CS-89-116, Dep. Comput. Sci., Carnegie-Mellon Univ., Feb. 
1989. 
A. Z. Spector and M. L. Kazar, “Wide area file service and the AFS 
experimental system,” Unix Rev., vol. 7, no. 3, Mar. 1989. 
A. Z. Spector and K. R. Swedlow, Ed., The Guide to the 
Camelot Distributed Transaction Facility: Release I, 0.98(51) edi- 
tion, Carnegie Mellon Univ., 1988. 
B. Walker, G. Popek, R. English, C. Kline, and G. Thiel, “The LO- 
CUS distributed operating system, ” in Proc. 9th ACM Symp. Oper. 
Syst. Principles, Bretton Woods, Oct. 1983. 



SATYANARAYANAN et al.: CODA: A HIGHLY AVAILABLE FILE SYSTEM 

Mahadev Satyanarayanan (S’80-M’83) for a photograph and biography, see 
the March 1990 issue of this TRANSACTIONS, p. 348. 

James J. Kistler received the B.S. degree in busi- 
ness administration from the University of Califor- 
nia, Berkeley, in 1982, and the Diploma in Com- 
puter Science from the University of Cambridge, 
England, in 1985. 

He is currently working toward the Ph.D. degree 
in computer science at Carnegie Mellon University. 
He has been a member of the Coda project since 
its inception in 1987. His research interests are in 
distributed and parallel computing. 

Mr. Kistler is a member of the IEEE Computer 
tion for Computing Machinery. 

Puneet Kumar received the Bachelor’s degree in 
computer science from Cornell University. Ithaca, 
NY. 

He is currently a student in the Ph.D. program at 
the School of Computer Science. Carnegie Mellon 
University. His research interests are distributed file 
systems and transaction systems. He is interested 
in both the theory and implementation of these sys- 
tems. 

459 

Maria E. Okasaki received the B.S. degree in 
mathematics (with a computer science option) from 
Harvey Mudd College, Claremont, CA, in 1988. 

She is currently a graduate student in computer 
science at Carnegie Mellon University. Her research 
interests mclude distributed systems, simulation, 
and performance evaluation. 

Ms. Okasaki is a member of Sigma Xi. 

Ellen H. Siegel for a photograph and biography, see the March 1990 
of this TRANSACTIOIYS, p. 348. 

David C. Steere received the B.S. degree in com- 
puter science from Worcester Polytechnic Institute, 
Worcester, MA, in 1988. 

He is currently pursuing a Ph.D. in computer sci- 
ence at Carnegie Mellon University. His research 
interests include distributed systems, communica- 
tions, performance modeling, operating systems, 
and portable workstations. 

Mr. Steere is a member of the Association for 
Computing Machinery, Tau Beta Pi, and Upsilon 
Pi Epsilon. 


