
Improving Data Consistency in Mobile Computing
Using Isolation-Only Transactions

Qi Lu M. Satyanarayanan

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
fluqi,satyag@cs.cmu.edu

Abstract

Disconnected operation is an important technique for
providing mobile access to shared data in distributed file
systems. However, data inconsistency resulting from par-
titioned sharing remains a serious concern. This paper
presents a new mechanism called isolation-only transac-
tion(IOT) that uses serializability constraints to automat-
ically detect read/write conflicts. The IOT consistency
model provides a set of options for automatic and manual
conflict resolution. In addition, application specific knowl-
edge can be incorporated to detect and resolve conflicts.
To preserve upward Unix compatibility, the IOT mecha-
nism is provided as an optional file system facility and its
flexible interfaces allow any existing Unix application to
be executed as an IOT. This paper describes high level sys-
tem design and implementation and concludes with related
work and current status.

1 Introduction

Disconnected operation based on an optimistic replica
control strategy has proved to be a viable technique for
mobile file access[9]. There is now considerable evidence
that write/write conflicts, which dominated early discus-
sions of optimistic replication, are relatively rare and can
often be transparently resolved[10, 11, 12, 18]. But actual
experience indicates that read/write conflicts, traditionally
ignored in file systems, deserve much greater attention in
disconnected operation.

The possibility of read/write conflicts exists even in
timesharing file systems: for example, consider the in-
stallation of a new version of a library by one user while
another user is building executables that link in the library.
Although such conflicts are rare in timesharing or worksta-
tion environments, the analogous scenario in mobile com-
puting is far more likely to lead to read/write conflicts.
Two factors account for this. First, long periods of discon-
nection significantly enlarge the window of vulnerability.

This research was supported by the Air Force Materiel Command
(AFMC) and ARPA under contract number F196828-93-C-0193. Addi-
tional support was provided by the IBM Corporation, Digital Equipment
Corporation, and Intel Corporation.

Second, explicituser coordination to avoid conflicts is more
difficult.

Consider the following example of a partitioned
read/write conflict. A programmer Joe caches relevant
files on his laptop for a weekend trip. While disconnected,
he edits some source files and builds a new version of
cfs, a file system utility program. But one of the libraries
libutil.a that is linked in is updated on the servers
during Joe’s absence. Here the linking and updating of
libutil.a constitute a read/write conflict, leaving cfs
in a possible unsatisfactory state. The consequences of un-
detected read/write conflicts can be especially painful if the
result cfs program is used for further mutations, thereby
leading to cascaded read/write conflicts.

In this paper, we describe a mechanism that can de-
tect and resolve read/write conflicts in the Coda File
System[19]. The challenge in designing such a mechanism
is to balance three distinct concerns. First, the mechanism
has to offer improved consistency for applications in a con-
venient and easy to use fashion. Second, the mechanism
has to be efficient and make minimal demands of resource-
poor mobile clients. Third, it should be upward compatible
with the large body of existing Unix software.

2 Isolation-Only Transactions

Our design extends Coda with a new transaction service
called isolation-onlytransaction(IOT). IOTs are a sequence
of file access operations with a set of properties specially
tailored for disconnected operation in a mobile comput-
ing environment. The IOT system performs automatic
read/write conflict detection based on certain serializabil-
ity constraints. It supports a variety of conflict resolution
mechanisms includingemploying applicationsemantics for
conflict detection and resolution. The name “IOT” stems
from the fact that this mechanism focuses solely on the Iso-
lationaspect of the ACID properties[8]. Unlike full-fledged
transactions, IOTs do not guarantee failure atomicity and
only conditionally guarantee permanence[15].

It is important to note that we do not replace Coda’s
underlying Unix file system semantics with a transactional
one. Rather, to preserve upward Unix compatibility, IOTs
are provided as an optional facility for helping users to
maintain consistency in mobile computing. Any existing
Unix application can be executed unchanged within the



scope of a transaction. Note that in the rest of this document
we will use the term transaction to mean IOT when there
is no ambiguity.

2.1 IOT Interfaces

The IOT service in Coda can be easily accessed through
either of the two separate interfaces we have developed.
Users can dynamically specify which application to execute
as a transaction using the interactive interface of a special C
shell in a similar fashion to setting environment variables.
For example the following command:

setiot /usr/cs/bin/make reexec

specifies make as a transaction using the default consistency
guarantee and automatic re-execution as its conflict reso-
lution option(explained later). Any execution of make will
now obtain the specified consistency support from the IOT
system. In addition, a sequence of commands bracketed by
the commands of beginiot and endiot is treated as a
single transaction.

Application programmers can construct a transaction
using the begin iot(iot spec) and end iot() li-
brary routines of the IOT programming interface, where
iot spec specifies the transaction’s selection of consis-
tency guarantee and conflict resolution option. The neces-
sary source code adaptation is well-structured and straight-
forward.

2.2 Execution Model

running pending

committed

invocation

without
partitioned
file access

resolving

validated invalidated

second class transaction

first
class
transaction

resolved
resolution
succeeded

with partitioned
file access

Figure 1: IOT State Transition

Transaction execution is performed entirely on the client
and no partial result is visible on the servers. If a transac-
tion, T, does not have any partitioned file access, its result
is immediately committed to the servers and it is called
a first class transaction. Otherwise, T is called a second
class transaction and its result is held within the client’s
local cache and visible only to subsequent accesses on the
same client. T stays in the pending state until connectivity
is restored. At that time, T is validated with respect to the
current server state using the consistency criteria described
in the next section. T is immediately committed if it is suc-
cessfully validated. Otherwise, it enters the resolving state

to be automatically or manually resolved and then enters
the resolved state(see Figure 1).

2.3 Consistency Guarantees

Similar to the traditional transactions, a first class trans-
action is guaranteed to be serializable(SR) with all previ-
ously committed or resolved transactions[7]. This guaran-
tee enables IOT to serve as a general purpose file system
concurrency control mechanism in fully connected envi-
ronments.

Second class transactions are guaranteed to be locally
serializable among themselves. Furthermore, two different
serializability constraints are offered with one of them be-
ing automatically enforced as the consistency criterion for
validating pending transactions based on the user’s choice.

The first criterion is global serializability(GSR), which
means that if a pending transaction’s local result were writ-
ten to the servers as is, it would be SR with all previ-
ously committed or resolved transactions[3]. However,
GSR alone is not adequate for certain applications, partic-
ularly in voluntary and long lasting disconnected operation
sessions.

Let us re-visit the previous example. Suppose Joe exe-
cutes make as a second class transaction TJ to build cfs
on his disconnected laptop and the library libutil.a is
updated by a first class transaction TL while Joe is away.
Also suppose that there are no other related file accesses.
When Joe re-connects the laptop to the servers, TJ will
be admitted because it can be serialized before TL, even
though Joe might want his new cfs to be compatible with
the latest libraries or at least be notified about the change.

Our remedy to this problem is to offer a stronger con-
sistency criterion called global certifiability(GC) which re-
quires a pending transaction be globally serializable not
only with, but also after, all the previously committed or
resolved transactions[15]. Intuitively, the GC criterion as-
sures that the data accessed by a pending transaction are un-
changed on the servers between the start and the validation
of the transaction. We use GC as the default consistency
criterion.

2.4 Resolution Options

To cope with transaction validation failure, the IOT
model provides the following four options.

� The first option is to automatically re-execute the
transaction using up-to-date data from the servers.
Consider our example one more time. Suppose Joe
wants to make sure that his work done on a discon-
nected laptop is compatible with the most recent sys-
tem state, he can run TJ using the default consistency
guarantee and the automatic re-execution resolution
option. When TJ is invalidated at the re-connection
time because of TL, the IOT system will automati-
cally re-run make to build an up-to-date version of
cfs. Part of Figure 2 shows the actual working of
this example.

� The second option is to automatically abort the trans-
action by rolling back its local result. It is commonly



The work window displays the process of disconnecting the client, setting make and latex as transactions
in the special IOT shell, executing a make transaction and a latex transaction, reconnecting the client, and
checking transaction status using the lt(list transaction) command. At reconnection time the make transaction
is invalidated because the linked library libutil.a was updated on the servers. The IOT monitor window shows
the automatic re-execution of the make transaction and the committing of the latex transaction.

Figure 2: IOT Examples

used by traditional transactions for restoring consis-
tency after failures. The first two options are appli-
cable to almost any application because they are both
automatic and application independent.

� The thirdoption is to automatically invoke a user spec-
ified application specific resolver(ASR)[11, 12]. ASR
is an important feature that distinguishes IOT from
most other transaction models. It allows application
semantic knowledge to be utilized for conflict reso-
lution. More importantly, it provides support for ap-
plication specific conflict detection as well. This is
because failure to satisfy GSR or GC does not neces-
sarily mean that the relevant objects are in an incon-
sistent state. An ASR can use application semantics
to check whether a transaction’s local result is actu-
ally consistent with respect to the current server state.
If so, it can simply use the local result as the resolu-
tion outcome, effectively overcoming the limitations
of syntactic validation of GC or GSR.

� As a last resort(the default option), the conflicts caused
by an invalidated transaction are exposed to the user
for manual resolution(or repair).

2.5 Conflict Representation

An object is in conflict(or inconsistent) if it is accessed
by an invalidated transaction and its local version differs
from its global version. The Coda client represents incon-
sistent objects in the form of a dangling symbolic link in
normal operation to visually notify the users about the con-
flict and prevent furtheraccess and cascading inconsistency.
However, in the resolve operation mode, where an invali-
dated transaction is being resolved, the client must expose
both the local and global state for the relevant inconsistent
objects to the resolver. To achieve this, an inconsistent ob-
ject is temporarily converted into a fake directory with two
children named “local” and “global” containing the object’s
local and global replica respectively. The local replica is
read-only while the global replica is mutable and serves as
the workspace for the resolver to build up resolution result.
We also provide the multiple view capabilities so that the
resolver can choose to view only the local or the global
state of an inconsistent object in its normal form.

While an invalidated transaction T is being resolved,
the local replicas of T ’s inconsistent objects correspond to
their value at the completion of T ’s execution. In order



to provide such a snapshot of T ’s resulting object state,
we maintain multiple cache file versions and use dynamic
binding between an object and its cache files. Notice that
the resolution of T may need to access objects that were
not previously accessed by T and some of them may be
inconsistent due to other invalidated transactions. We em-
ploy the multiple view mechanism to ensure that only the
global state of those objects is visible to the resolver so
that global serializability can be obtained for the resolution
process[14].

2.6 Conflict Resolution

Invalidated transactions are resolved incrementally, i.e.,
one by one, according to their local serialization order. Res-
olution computations consist of coordinated actions from
the transaction system and the resolver. They are performed
entirely on the client for security and scalability purposes.
The system first sets up the resolution object view and the
appropriate environment. Then the resolver(automatic or
manual) takes over and creates the resolution result in the
global replica of the corresponding objects. Finally the sys-
tem atomically installs the resolution result to the servers,
discards the original local result and restores the normal
object view. The transaction system is also responsible for
the local concurrency control necessary for the resolver’s
exclusive access to objects.

To facilitate the ASR programming, additional library
routines are provided in the IOT programming interface
to allow an ASR to adjust object views and test object
membership for the corresponding transaction’s readset and
writeset. In addition, the Coda repair tool is extended with a
set of new commands for manually repairing an individual
or a group of transactions[14].

3 Implementation

Besides the IOT interfaces, the new Coda repair tool
and some necessary extensions in the kernel and server
to support transaction execution, most of the IOT system
is implemented inside the Venus cache manager of Coda.
Venus support for IOT resides in four main modules:

� The execution monitor’s main function is to record
transaction readsets and writesets. The interface be-
tween the kernel and Venus is extended so that process
information can be used to identify which file access
operation belongs to which transaction.

� The concurrency controller performs two levels of
concurrency control. Across clients, global concur-
rency control is maintained using the optimistic con-
currency control(OCC) scheme[13]. Within a client,
local concurrency control is enforced using strict two
phase locking with periodic deadlock detection.

� The replica manager’s responsibility is maintaining
and providing access to the local and global replicas
for inconsistent objects. It is also in charge of main-
taining multiple versions of a cache file and adjusting
the binding between an object and its cache files.

� The consistency maintainer performs the central task
of detecting and resolving read/write conflicts. Con-
flict detection is accomplished by checking whether a
pending transaction’s readset and writeset satisfy the
appropriate constraints. Automatic conflict resolution
support is provided by a generic invocation mecha-
nism that can execute either the transaction itself or an
associated ASR.

4 Status

As of this writing, most of the IOT system has been
implemented and is operational. An early version of the
replica manager together with an extended Coda repair tool
has been released for public use for four months. An IOT
system with all the basic functionality has been in private
use for months. Examples of how transactions work in ac-
tual disconnected operation are shown in the screen image
of a Coda laptop in Figure 2.

Currently, only the GC consistency guarantee is im-
plemented because our experience indicates that it offers
sufficient consistency support for the most common use
of disconnected operation. Although GC may be too re-
strictive in certain situations compared to GSR, the ASR
mechanism allows application knowledge to be utilized to
compensate the limitation. Our current design is fully com-
patible with a future GSR implementation.

We are improving the current IOT implementation for
public release to the Coda user community. Extensive ex-
periments using IOT in application domains such as soft-
ware development and document processing will be con-
ducted. Based on quantitative measurements and quali-
tative usage analysis, we will evaluate IOT as a tool for
improving data consistency in mobile computing.

5 Related Work

The IOT execution model is inspired by Kung and
Robinson’s optimistic concurrency control(OCC) model,
with the client cache effectively serving as the private
workspace for transaction processing. OCC is also em-
ployed as the concurrency control algorithm for first class
transactions because it offers high performance and scala-
bility in the Coda environment.

Lock based concurrency control methods[5], the main
alternatives to OCC, are not used by IOT because of the dif-
ficulty of implementing distributed locking in the presence
of disconnection. Timestamp based algorithms[2, 17] are
not suitable for our purposes mainly because of the need
to maintain timestamps for both read and write operations
on the servers, which leads to significantly increased server
load and reduced scalability.

The GSR consistency guarantee originates from David-
son’s optimistic transaction model[3]. Application seman-
tics have previously been used in transaction processing
to improve concurrency control performance[6], whereas
IOT’s use of semantic knowledge focuses on application
specific conflict detection and resolution.

Consistency maintenance for disconnected operation
has also been the focus of some recent research. The Bayou
architecture explores weak consistency in shared and repli-
cated data repositories accessed by mobile hosts[4]. It



allows individual applications to obtain a self-consistent
view through session semantic guarantees[20], some of
which can be achieved using IOT. Other recent work [16]
discusses a weak consistency model for traditional transac-
tions and [1] proposes the causal consistency technique for
detecting mutual consistency for shared objects.

6 Conclusion

With the increasing popularity of portable computers
and the use of mobile computing systems, the problem of
maintaining consistency for partitioned data sharing will
become more important. The key to solving this prob-
lem is to provide improved consistency within the limited
resource capacity of mobile computers while maintaining
usability for a wide variety of applications. We believe that
the IOT mechanism is a significant step towards this goal.

References

[1] M. Ahamad, F. Torres-Rojas, R. Kordale, J. Singh, and
S. Smith. Detecting Mutual Consistency of Shared Ob-
jects. In Proceedings of the First IEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz, CA, De-
cember 1994.

[2] P. Bernstein, J. Rothnie, N. Goodman, and C. Papadimitriou.
The Concurrency Control Mechanism of SDD-1: A System
for Distributed Databases. IEEE Transaction on Software
Engineering, SE-4(3):154–168, May 1978.

[3] Susan Davidson. An Optimistic Protocol for Partitioned
Distributed Database Systems. PhD thesis, Princeton Uni-
versity, 1982.

[4] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch. The Bayou Architecture: Support for Data
Sharing among Mobile Users. In Proceedings of the First
IEEE Workshop on Mobile Computing Systems and Appli-
cations, Santa Cruz, CA, December 1994.

[5] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The No-
tion of Consistency and Predicate Locks in a Database Sys-
tem. Communications of ACM, 19(11):624–633, November
1976.

[6] H. Garcia-Molina. Using Semantic Knowledge for Transac-
tion Processing in a Distributed Database. ACM Transaction
on Database Systems, 8(2):186–213, June 1983.

[7] J. Gray, R. Lorie, G. Putzulo, and I. Traiger. Granularity
of Locks and Degrees of Consistency in a Shared Database.
Research Report RJ1654, IBM, September 1975.

[8] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufman, 1993.

[9] J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System. ACM Transactions on Computer
Systems, 10(1):3–25, February 1992.

[10] P. Kumar and M. Satyanarayanan. Log-Based Directory
Resolution in the Coda File System. In Proceedings of
the Second International Conference on Parallel and Dis-
tributed Information Systems, January 1993.

[11] P. Kumar and M. Satyanarayanan. Flexible and Safe Res-
olution of File Conflicts. In Proceedings of 1995 USENIX
Conference, New Orleans, LA, January 1995.

[12] Puneet Kumar. Mitigating the Effects of Optimistic Repli-
cation in a Distributed File System. PhD thesis, Carnegie
Mellon University, December 1994.

[13] H.T. Kung andJ. Robinson. On Optimistic Methods for Con-
currency Control. ACM Transaction on Database Systems,
6(2):213–226, June 1981.

[14] Q. Lu and M. Satyanarayanan. Conflict Representation and
Resolution for Disconnected Operation in the Coda File
System. In Preparation.

[15] Q. Lu and M. Satyanarayanan. Isolation-Only Transactions
for Mobile Computing. ACM Operating Systems Review,
28(2):81–87, April 1994.

[16] E. Pitoura and B. Bhargava. Revising Transaction Concepts
for Mobile Computing. In Proceedings of the First IEEE
Workshop on Mobile Computing Systems and Applications,
Santa Cruz, CA, December 1994.

[17] D. Reed. Implementing Atomic Actions on Decentralized
Data. ACM Transaction on Computer Systems, 1(1):3–23,
February 1983.

[18] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and
G. Popek. Resolving File Conflicts in the Ficus File System.
In USENIX Summer Conference Proceedings, Boston, MA,
June 1994.

[19] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki,
E. Siegel, and D. Steere. Coda: A Highly Available File
System for a Distributed Workstation Environment. IEEE
Transaction on Computers, 20(4), April 1990.

[20] D. Terry, A. Demers, K. Petersen, M. Spreitzer, M. Theimer,
and B. Welch. Session Guarantees for Weakly Consistent
Replicated Data. In Proceedings of International Con-
ference on Parallel and Distributed Information Systems,
Austin, Texas, September 1994.


