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Pervasive Personal
Computing in an Internet
Suspend/Resume System

The Internet Suspend/Resume model of mobile computing cuts the tight binding

between PC state and PC hardware. By layering a virtual machine on distributed

storage, ISR lets the VM encapsulate execution and user customization state;

distributed storage then transports that state across space and time. This article

explores the implications of ISR for an infrastructure-based approach to mobile

computing. It reports on experiences with three versions of ISR and describes

work in progress toward the OpenISR version.

P ortable computers have been the
driving technology behind mobile
computing since the early 1990s.

Today, the phrase mobile computing is
almost synonymous with the use of lap-
top and handheld computers. However,
the plummeting cost of hardware sug-
gests that the pervasive computing infra-
structure might some day eliminate the
need to carry such hardware.

In this article, we describe a new
approach to mobile computing that
embraces this opportunity — specifically
with the Internet Suspend/Resume (ISR)
system that emulates the suspend/resume
capability of laptop hardware. Rather
than carrying hardware, we might find
and use hardware transiently at any
location. Imagine a world where coffee

shops, airport lounges, dental and med-
ical offices, and other semipublic spaces
provide hardware for their clientele. Even
the foldout tray at every seat in an air-
plane or commuter train could be a lap-
top. In that world, users could travel
hands-free yet make productive use of
slivers of time anywhere such infrastruc-
ture is available. This technical capabili-
ty could inspire new business models,
centered on meeting customer demand
for trustworthy computing hardware at
any time and place and on preserving PC
state on servers.

Why is infrastructure-based mobile
computing attractive? There are obvious
advantages, such as traveling with less
luggage, simplifying security screening in
a post-9/11 world, and being able to get
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work done at unexpected times and locations even
if you didn’t have the foresight to bring your lap-
top. More fundamentally, infrastructure-based
mobile computing can liberate us from the rigid
design constraints of portable hardware. For a
given cost and level of technology, considerations
of weight, power, size, and ergonomics exact a
penalty in attributes such as processor speed,
memory size, and disk capacity. Although mobile
elements will improve in absolute ability, they will
always be resource-poor relative to static elements
of the same vintage. Furthermore, the dependence
on a finite energy source and the need to monitor
remaining energy is an ongoing distraction for
mobile users.

Liberating Personal Computing
The world we envision will retain the user cus-
tomization aspect of personal computing. However,
computers themselves will become a ubiquitous
resource, much like light at the flip of a switch,
water from a faucet, or the air we breathe. (See the
“Think Wallet, Not Swiss Army Knife” sidebar for
an extended discussion of this idea.) On demand,
any Internet-connected computer could temporari-
ly become your personal computer. Any machine
will be able to acquire a user’s unique customiza-
tion and state from a server. When a user is done,
his or her modified state is erased from that machine
and returned to the server. Loss, theft, or destruc-
tion of the machine will become only a minor
inconvenience, not a catastrophic event.

To attain this vision, we need to solve at least
three difficult technical problems:

• Provide efficient on-demand access to a user’s
entire personal computing environment. Today,
users who carry a portable computer are
assured of seeing exactly the same set of per-
sonal files, operating system, customizations,
and so on everywhere they go. Precise and
complete recreation of this familiar context is
the key to low user distraction in any future
mobile computing model. Just providing access
to a user’s personal files or to application cus-
tomizations won’t suffice.

• Ensure resilience to Internet vagaries. Today,
users working with local data on portable com-
puters are unaffected by network quality. They
aren’t impacted by unpredictable bandwidth
and latency or by occasional failures. This
defines the standard against which consumers
will judge new models of mobile computing.
Users must perceive crisp, stable, interactive
performance even under conditions of high
network latency and network congestion. The
building blocks of modern-day user interfaces
such as scrolling, highlighting, and popup
menus all assume a tight feedback loop
between users and their applications. Only a
thick-client solution, in which the application
executes close to the user, can support this tight
feedback loop when network connectivity is
poor.1 In the extreme case of network discon-
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Think Wallet, Not Swiss Army Knife

T he Internet Suspend/Resume (ISR)
system offers a fundamentally differ-

ent way of thinking about mobile comput-
ing and about the resources that we need
to carry. The current design philosophy for
mobile devices resembles a Swiss Army
knife approach: cram as much functionality
as possible into a single device. Unfortu-
nately, as anyone who has used a Swiss
Army knife knows, its value as survival gear
is much higher than its value in everyday
use. If you are stranded far from civilization,
the many functions of a Swiss Army knife
(such as knife, fork, can opener, corkscrew,
screw driver, tooth pick, and so on) can be
a life saver. But each function is suboptimally
implemented relative to a full-sized imple-

mentation. For example, you would much
rather use a full-sized screw driver, if avail-
able, than the small, hard-to-use one in a
Swiss Army knife. The same logic applies to
that device’s other functions.

Contrast this with the different design
philosophy of a wallet. Virtually every
adult carries a wallet. The contents vary,
but they typically include things like cash,
credit cards, ID cards, and so on. Far from
civilization, a wallet is useless. You might
die of starvation or thirst in the wilder-
ness even with a fat wallet; a Swiss Army
knife would be much more useful in those
circumstances. In the context of civiliza-
tion, however, a wallet is more useful.
With cash or a credit card, you can obtain

anything you need, when and where you
need it.

Thus, we can view a wallet as a device
that helps transform generic infrastructure
into highly personalized services. This obser-
vation leads to a different design philosophy
for mobile devices. Rather than cramming
direct functionality into the device, we put
indirect functionality in it. This indirect func-
tionality leverages the external environment
to provide direct functionality on demand.
Carrying a Trust-Sniffer device integrated
with USB storage for look-aside caching
brings us close to the model of carrying a
wallet rather than a Swiss Army knife. Such
a device could even be the size of a credit
card and fit into your wallet!



nection, the user should still be able to contin-
ue working. This challenging requirement pre-
cludes a range of thin-client solutions such as
Sun Ray,2 Virtual Network Computing (VNC),3

and AJAX-based applications4 that execute on
a remote computing server.

• Establish trust in unmanaged hardware for
transient use. Today, when users sit down to
use a computer in their office or home, they
implicitly assume that their machine hasn’t
been tampered with and that no malware such
as a keystroke logger has been installed. This is
a reasonable assumption due to restricted phys-
ical access to the machine. The same assump-
tion applies to a portable computer that the
user physically safeguards at all times. If tran-
sient use of hardware is to become common-
place, users must be able to quickly establish a
similar level of confidence in hardware that
they don’t own or manage.

Since 2001, we’ve been exploring solutions to
these problems in the context of ISR. As its name
suggests, ISR emulates the suspend/resume capa-
bility of laptop hardware. Applications and
operating systems today already support this well-
understood metaphor. The difference is, of course,
that ISR lets you suspend on one machine and

seamlessly resume on another. We have built three
experimental versions of ISR (ISR-1, ISR-2, and
ISR-3) and have gained small-scale deployment
experience with ISR-3. Based on our implementa-
tion and usage experience, we’re working toward a
new version of ISR, which we call OpenISR.

ISR Architecture
ISR builds on two technologies that have matured
in the past few years. Specifically, it layers virtual
machine technology on distributed storage tech-
nology. Each VM encapsulates a distinct execution
and user-customization state that we call a parcel.
The distributed storage layer transports a parcel
across space (from suspend site to resume site) and
time (from suspend instant to resume instant).
Users can own multiple parcels, just as they can
own multiple machines with different operating
systems or application suites.

Figure 1 shows an ISR client machine’s logi-
cal structure. This structure has remained invari-
ant across the many different ISR versions,
although the components implementing each
layer have changed over time. For example, the
virtual machine monitor (VMM) was VMware5 in
early versions of ISR but now can be VMware,
KVM, or Xen.6 These VMMs support a mode in
which a local disk partition holds the VM state.
By intercepting disk I/O references from the
VMM to this disk partition, the ISR layer can
transparently redirect the references to distrib-
uted storage.

As Figure 1 shows, the ISR client software
encrypts data from a parcel before handing it to
the distributed storage layer. Neither servers nor
persistent client caches used by the distributed
storage mechanism contain any unencrypted user
state. Compromised storage servers can, at worst,
result in a denial of service. Compromise of a client
after a user suspends can, at worst, prevent the
updated VM state from being propagated to
servers, also resulting in denial of service. Even in
these situations, ISR preserves the privacy and
integrity of user parcels.

The highly asymmetric separation of concerns
made possible by a distributed storage system
reduces the skill level needed to manage ISR sites.
Little skill is needed to maintain client machines
or to deploy new ones. System administration
tasks that require expertise (such as backup,
restoration, load balancing, and adding new users)
are concentrated on a few remotely located

18 www.computer.org/internet/ IEEE INTERNET COMPUTING

Roaming

Figure 1. Modular structure of an Internet Suspend/Resume
(ISR) client.
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servers administered by a small professional staff.
We expect that server hardware and the profes-
sional staff that will administer it will often be
dedicated to a specific organization such as a
company, university, or ISP. Because ISR users
belonging to many different organizations are
likely to visit locations such as coffee shops and
doctors’ offices, domain-bridging mechanisms
such as AFS cells7 or Kerberos realms8 will be
valuable. Figure 2 illustrates how we might organ-
ize an ISR deployment.

ISR-1
ISR-1 was a proof-of-concept implementation that
used NFSv3 as the distributed storage layer and
VMware Workstation 3.0 on a Linux host as the
VMM. The ISR layer implemented a trivial copyin/
copyout of the entire VM state between file servers
and the local disk. By the end of 2001, ISR-1 had
confirmed that layering a VM on distributed stor-
age could yield functionally seamless suspend and
resume capability.9 At the same time, measure-
ments of the prototype exposed the need for a
more sophisticated implementation to achieve
acceptable performance.

For a user parcel configured with 128 Mbytes
of main memory and a 2-Gbyte virtual disk, sus-
pend and resume operations took roughly two
minutes each on a 100 Mbits per second (Mbps)
Ethernet. Although this might be tolerable for
some usage models, it’s much longer than modern
laptops’ typical suspend/resume times. Further-
more, using NFS meant that the prototype was
acutely sensitive to network quality.

In spite of its shortcomings, even this simple
prototype gave us useful insight into user expec-
tations regarding suspend and resume. We real-
ized that users perceive resume latency more
acutely than suspend latency because the suspend
operation can be asynchronous. Users can depart
immediately after initiating suspend, for example,
and let the operation complete while they’re trav-
eling. This led us to use simple file compression to
shorten resume latency at the cost of increased
suspend latency.

ISR-2
Encouraged by the results from ISR-1, we built a
new implementation, ISR-2, and used it from early
2002 until late 2004 to explore ISR performance
trade-offs.10,11 This version of ISR had much
improved performance relative to ISR-1. It also

supported disconnected and weakly connected
operation and enabled use of portable storage
devices for accelerating VM state transfers.

In terms of the layers in Figure 1, the VMM
layer continued to be the VMware Workstation 3.0
on a Linux host. However, the distributed storage
layer in ISR-2 was the Coda File System12 rather
than NFS. We implemented the ISR layer in two
parts. One part was a loadable kernel module called
Fauxide that served as the device driver for a
pseudodevice. We configured VMware to use this
pseudodevice for the VM state. Fauxide redirected
VMware requests to this pseudodevice to a user-
level process called Vulpes, which was the ISR
layer’s second component. Vulpes implemented the
VM state-transfer policy, the VM state’s mapping
to a directory tree of 256-Kbyte files in Coda, and
hoarding control for these files.

Because Vulpes was outside the kernel and fully
under our control, it was easy to experiment with a
range of VM state-transfer policies. From a user’s
viewpoint, two questions frame ISR’s key perform-
ance metrics. The first metric is resume latency: how
soon can I begin working after resume? The second
metric is slowdown: how sluggish is work after I
resume? An ideal ISR implementation would have
zero resume latency and zero slowdown. In practice,
there are trade-offs between the two because poli-
cies that shrink one might increase the other.

Our results showed that a pure demand–fetch
policy could yield resume latency as low as 14 sec-
onds on a 100 Mbps local area network (LAN) for a
modestly configured VM. Such a policy fetches
only the minimal state needed for resume and
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Figure 2. A hypothetical multiorganization Internet Suspend/
Resume deployment.
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obtains the rest on demand as execution proceeds.
We measured slowdown to be roughly 8 percent,
at 100 Mbps. Network bandwidth was a critical
factor in determining both resume latency and
slowdown, rendering this policy unusable below
approximately 10 Mbps.

Our results also showed that a fully proactive
policy was usable even at dialup speeds. This pol-
icy exploits advance knowledge of the resume site
to overlap VM state transfer with user travel time
from the suspend to resume site. The advance
knowledge might be trivially available in some
situations, such as ISR being used between home
and work. We measured resume latencies of
approximately 10 seconds at all bandwidths, with
virtually no observable slowdown at any band-
width. Of course, this policy is only feasible when
travel time exceeds VM state transfer time. In our
experiments, this ranged between 45 seconds on
a 100 Mbps network and 14 minutes at a DSL or
cable modem speed of 1 Mbps. The latter figure
hints at deployment feasibility even today because
many commutes are longer than 14 minutes in
major cities.

Our results also showed the considerable value
of using portable storage to accelerate VM state
transfers. Although our discussion of ISR until this
point has emphasized its hands-free or carry-
nothing aspect, we expect that users might be will-
ing to carry something small and unobtrusive if it
would enhance their ISR usage experience. Today,
USB and Firewire storage devices in the form of
storage key chains or microdrives are widely avail-
able. By serving as a local source of critical data,
such a device could improve ISR performance at
sites with poor network connectivity.

Our approach to integrating portable storage
with distributed storage is called lookaside
caching. (See an earlier work for full details.13) The
essence of lookaside caching is to treat data on a
portable storage device only as a hint, not as the
authoritative version of that data. Before using the
data, an ISR client compares the cryptographic
hash to that provided by the server for the author-
itative version. If the hashes match, the client can
use a copy operation from the portable storage
device instead of a fetch operation from the serv-
er over a slow network. Lookaside caching is thus
an idiot-proof approach to using portable storage
for ISR. If users forget to update the device at sus-
pend, or if they absentmindedly pick up the wrong
device for travel, there’s no danger of using an

incorrect VM state. The only consequence is a
large resume latency and slowdown at sites with
poor Internet connectivity. This contrasts with
approaches such as SoulPad,14 in which portable
storage is assumed to contain a VM’s authorita-
tive state. Our measurements confirmed that
lookaside caching can yield usable resume laten-
cies and slowdowns at bandwidths down to 1
Mbps. (Full details of experimental results with
ISR-2 are available elsewhere.11)

ISR-3
In late 2004, we turned our attention to a real-
world deployment of ISR with the goal of gain-
ing usage experience with this new paradigm.
This required us to create a new version of ISR
that paid careful attention to the logistics of
deployment. ISR-315 subsumes much of ISR-2’s
code and functionality but offers simpler installa-
tion and usage as well as greater flexibility in
system configuration.

A major change in this version is that Coda is
only one of many possible mechanisms that we can
use for the distributed storage layer. ISR-3’s struc-
ture makes it easy to replace Coda with alternatives,
such as OpenAFS or Lustre,16 or to use a built-in
storage layer based on HTTP and Secure Socket
Shell (SSH). Relative to ISR-2, the ISR layer’s Faux-
ide component is unchanged, but we substantially
modified the Vulpes component. We also upgrad-
ed the VMM to VMware Workstation 4.5.

A pilot deployment of ISR began in January
2005 and continued until mid-2006. At its peak,
the ISR user population spanned 23 active users
made up of Carnegie Mellon students and staff. We
gave users the choice of a Windows XP parcel, a
Linux parcel, or both. During the course of the
pilot, users performed numerous check-in opera-
tions, eventually creating 817 distinct parcel ver-
sions. In August 2005, after seven months of
continuous deployment, we took a snapshot of the
memory and disk images of these parcel versions
and analyzed it in detail.

A previous paper17 reports on empirical data
from this deployment, but we can summarize the
highlights here. A question of particular interest to
us is the effectiveness of content addressable stor-
age (CAS) in reducing the storage requirements on
ISR servers to retain multiple suspend images of
each parcel. Such retention can be valuable, for
example, in letting users easily roll back their exe-
cution states to a point before some nasty event
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such as a virus infection. Because substantial sim-
ilarity exists between a parcel’s successive suspend
images, there’s potential for reducing the total
storage requirements of N images to much less
than (N � average parcel size). Only empirical data
from real use can provide realistic estimates of
these savings.

Our study yielded the surprising result that we
should store the VM state on servers at much finer
granularity (4 to 16 Kbytes) rather than the larger
granularities (128 to 256 Kbytes) that we had used
in ISR-2 and ISR-3. Our original choice of granu-
larity was based on the trade-off between
increased metadata size and an improved cache hit
ratio resulting from fine granularity.11 Including
CAS in the trade-off space produces a very differ-
ent result: the benefit from improved similarity
across parcel images outweighs the metadata over-
head of finer granularity.

At a 4-Kbyte granularity, our results show that
using CAS could reduce server storage require-
ments by approximately 60 percent relative to a
simple block-based differencing policy. The corre-
sponding network bandwidth savings is 70 per-
cent. Our results also quantify the trade-off
between privacy and exploiting similarity across
user parcels. If the encryption-key management
policy allows servers to detect similarity across
user parcels, the storage and network bandwidth
savings are higher — 80 percent each, relative to a
block-based similarity-detection policy.

The OpenISR Version
Based on our experience and insights from previ-
ous versions of ISR and from our related work on
transparently morphing between thick- and thin-
client modes of execution,18 we’ve begun imple-
menting the OpenISR version of ISR. In addition
to extensive use of CAS, several key ideas distin-
guish this version from its predecessors.

VMM Agnosticism
The past few years have seen an explosion of
VMMs for the Intel x86 hardware. Examples
include VMware Workstation, VMware ESX, Xen,
KVM, Microsoft Virtual Server, and Parallels Work-
station. To give users the greatest freedom in
choice of resume site, ISR should place the fewest
possible constraints on the site configuration. In
particular, it should let resume occur on any x86
machine with a VMM, even if that VMM is differ-
ent from the one at the most recent suspend site.

We refer to this property as VMM agnosticism. To
achieve this, we store a parcel’s virtual disk com-
ponents in a VMM-independent format on servers.
Only the memory image is in a VMM-specific for-
mat. If a mismatch occurs between the VMM types
of the suspend and resume sites, we treat this as an
ISR exception.

We’re exploring several approaches to handling
this exception. For example, one approach is to
transform the memory image’s format. Another is
to convert the resume operation into a reboot oper-
ation, after user warning and approval.

Transient Thin-Client Mode
The time to transfer a suspended VM’s memory
image is a lower bound on resume latency in ISR-
2 and ISR-3. Even with a pure demand–fetch pol-
icy for the disk image, the state corresponding to

a VM’s entire physical memory must be available
at the resume site before execution begins. This
limits the usefulness of ISR for transient use at
locations such as a coffee shop or doctor’s office,
where a user might only have a few minutes to
spare. To overcome this limitation, we’re building
on techniques that we’ve developed to transpar-
ently morph between thin- and thick-client exe-
cution modes.

Our work to date has confirmed the feasibility
of using VMs as the basis of morphing between
thin-client execution during the resource-intensive
computational phases of an application and thick-
client execution during its interaction-intensive
phases. We plan to exploit this capability to
achieve the lowest possible resume latency. Upon
resume, execution begins in thin-client mode. Dur-
ing an initial brief period of user interaction, suf-
ficient VM state is transferred in the background
to switch to thick-client mode with a demand–
fetch policy. For some extremely brief sessions, the
user might suspend before execution switches to
thick-client mode.
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We envision a usage model in which
ISR is responsible for instantiating a
user’s customized operating system
and applications on demand.



Guest-Aware Migration
In all previous ISR versions, we treated the guest
operating system as a black box. This has the
attractive property that no modifications are need-
ed to the guest or to applications running on it. ISR
can therefore be used with proprietary operating
systems such as Windows XP and proprietary
applications such as the Microsoft Office suite.
However, this black-box approach also implies that
ISR can’t exploit knowledge the guest operating
system possesses.

Consider the guest operating system’s virtual
memory manager shortly before a suspend opera-
tion. If virtual memory is working well, the cur-
rent working set would be in physical memory and
an internal data structure approximating least
recently used (LRU) would be tracking the work-
ing set. That data structure contains precious

knowledge that ISR could use for prefetching a VM
state at resume. ISR could lower resume latency by
using a demand–fetch policy for VM state, aug-
mented with asynchronous background prefetch-
ing. Alternatively, ISR could fetch the entire
working set before allowing user interaction.
Except in pathological situations, prefetching
based on accurate knowledge of the working set
will typically yield much smaller slowdown than
a pure demand–fetch policy.

We refer to ISR implemented with help from the
guest operating system as a guest-aware implemen-
tation. The virtual memory example we just gave is
only one of many guest-aware mechanisms that
we’re exploring. The concept of paravirtualization
(requiring a small amount of low-level modifica-
tions to guest operating systems) in VMMs like Xen
anticipates the notion of seeking guest assistance
rather than requiring total transparency.

Cross-Parcel Data Sharing
Until now, our focus in ISR has been to recreate
the PC user experience, including extensive use of

the local disk to store user files. A consequence of
this tight emulation of the PC usage model is the
absence of support for data sharing across users
and even by a single user across parcels. As we
move to OpenISR, we’re exploring usage models
that simplify data sharing. Our approach is to use
Coda in the guest operating system as the data-
sharing mechanism. This is in contrast to how we
used Coda in ISR-2, where it was part of the host
operating system and therefore invisible to the user
and guest applications.

We envision a usage model in which ISR is
responsible for instantiating a user’s customized
operating system and applications on demand,
but Coda is responsible for providing a single,
system-wide image of user data. This usage model
hearkens back to the Andrew model of distributed
personal computing explored nearly 20 years ago,
which combines the flexibility and visually rich
user-machine interface of personal computing
with timesharing’s ease of communication and
information sharing.19 The OpenISR approach
preserves Andrew’s location transparency and
ease of data sharing but improves the fidelity
with which a user’s environment is recreated at
any usage site.

This approach has some implications for ISR
implementation. First, it’s likely that VMs will be
smaller, especially with respect to virtual disk size.
The virtual disk doesn’t have to be large enough to
hold all of a user’s files; rather it only has to be
large enough for a Coda cache that can hold the
working set of those files. Second, there are oppor-
tunities to make Coda ISR-aware and vice versa.
For example, as with virtual memory, ISR can infer
prefetching hints from the LRU information on
cached files that Coda maintains in the guest oper-
ating system.

Resilience to Internet Vagaries
So far in this article, we’ve mainly focused on pro-
viding on-demand access to a user’s personal com-
puting environment. We now turn to insulating
users from the Internet’s vagaries. Once data is
fully hoarded, ISR doesn’t require the network to
be available. The underlying storage system’s dis-
connected operation capability provides the illu-
sion of connectivity for ISR. Users can use the
cached state even when disconnected. The client
buffers updates and eventually reintegrates them
when network connectivity is restored. There’s no
danger of conflicting updates on reintegration
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The virtual disk doesn’t have to …
hold all of a user’s files; it only has to
be large enough for a Coda cache that
can hold the working set of those files.



because ISR enforces a single-writer model at VM
granularity — resume occurs only after a lock on
the entire VM state is acquired from ISR servers.

Thus, ISR is asynchronous in its network
dependence. Connectivity is necessary while
hoarding data and during eventual reintegration.
For extended periods between these two events
(possibly lasting many hours), total disconnection
is acceptable and has absolutely no performance
impact. If the ISR client is a laptop, a user can be as
mobile and productive with it during the discon-
nection period as he or she is with a laptop today.
Of course, the setup won’t support direct use of the
network (such as for Web browsing) while discon-
nected. But users can perform all other work (such
as editing, authoring, and so on) that doesn’t
require network access.

ISR’s asynchronous network dependence dis-
tinguishes it from the synchronous network
dependence of thin clients. By definition, discon-
nected operation is impossible with thin clients.
Furthermore, network quality must be sufficient
at all times for crisp, interactive response. (Note
that it’s the worst case, not the average case, that
determines whether a thin-client approach will be
satisfactory.1) In addition to physical-layer trans-
mission delays and end-to-end software path
lengths, technologies such as firewalls, overlay
networks, and lossy wireless networks add la-
tency and other hurdles. Even with a pure
demand–fetch policy, network latency affects ISR
performance much less than thin-client perform-
ance. This is especially true for intensely interac-
tive applications.

Interest in thin clients is high today because of
frustration with PCs’ high ownership costs. Unfor-
tunately, dependence on thin clients might hurt
the important goal of crisp, interactive response.
Furthermore, an ISR client can leverage local
graphics hardware accelerators, an increasingly
common feature of today’s computing landscape.
Extensive evidence exists from the human–com-
puter interaction community that interactive
response times over 150 milliseconds are notice-
able and begin to annoy a user as they approach
one second. To achieve seamless mobility with
thin clients, we need tight control of end-to-end
network latency, which is difficult at Internet
scale. Adding bandwidth is relatively easy, but
reducing latency is much harder. We see ISR as a
solution that trades off startup delay for crisp
interaction. Once execution begins, all interaction

is local. At the same time, an ISR client matches
a thin client’s valuable property: it doesn’t con-
tain any long-term user state.

Establishing Trust
The third problem we described in the “Liberating
Personal Computing” section is establishing trust
in unmanaged machines for transient use. To
address this problem, we’re creating a tool called
Trust-Sniffer that helps a user incrementally gain
confidence in a machine that is initially untrust-
ed. Trust-Sniffer focuses on software attacks but
doesn’t guard against hardware attacks. Only phys-
ical surveillance or the use of tamper-proof or
tamper-evident hardware could guard against
hardware attacks such as modifying the basic
input/output system (BIOS).

The root of trust in Trust-Sniffer is a small,

lightweight device such as a USB storage device
that users own and carry with them at all times.
This trust initiation device boots the untrusted
machine so that Trust-Sniffer can examine its
local disk and verify the integrity of all software
that would be used in a normal boot process. The
integrity check compares the SHA-1 hashes of the
kernel image and related boot software on disk
against a list located on the trust initiation device.
The list has the hashes of software that’s known
to be good. After verifying the normal boot
process’s integrity, Trust-Sniffer performs a reboot
from disk.

In this step, Trust-Sniffer’s trust-extender mod-
ule is dynamically loaded into the kernel. As its
name implies, this module is responsible for
extending the zone of trust as execution proceeds.
On the first attempt to execute any code that lies
outside the current zone of trust (including dynam-
ically linked libraries), the kernel triggers a trust
fault. To handle a trust fault, the trust extender
verifies the suspect module’s integrity by compar-
ing its SHA-1 hash against that of known, good
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modules. Execution stops if the trust extender can’t
establish the suspect module’s integrity.

This staged approach to establishing confidence
in an untrusted machine strikes a good balance
between the needs of security, usability, and speed.
Once users have gained confidence in a machine
and its ISR software, they can perform ISR’s
resume step.

W e plan to make the first OpenISR software
release in early 2007. The implementation

involves a complete replacement of the Fauxide
module shown in Figure 1 by a new loadable ker-
nel module called Nexus. Our usage experience
with ISR-3 has convinced us that a complete
restructuring and replacement of this component
is necessary to avoid subtle deadlocking issues that
arise under conditions of heavy memory pressure.
To conform to this restructuring, the Vulpes mod-
ule in Figure 1 will also undergo major changes
that will result in a new module. Although these
are extensive client changes, our plan is to initial-
ly preserve the server code with minimal changes.
This will let us begin deployment of OpenISR with
limited functionality to the development team to
gain hands-on usage experience as soon as possi-
ble. We’ll then implement new server code that will
use established authentication mechanisms such
as Kerberos and Active Directory Services, avoid-
ing the need for users to have SSH privileges on
servers (an ISR-3 requirement). We see this as a
critical requirement for expanding usage beyond
a small deployment.

As ISR gains momentum, we envision a process
of interleaved development and deployment in
which each drives the other. The scale of eventual
deployment will depend on the funding resources
that we can obtain. A campus-scale deployment is
our dream. Such a deployment, on the order of
thousands of users, would be a strong validation
of the ISR vision. Once it reaches that scale, we’re
confident that this tantalizing vision will become
self-sustaining.
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