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Abstract

Data deduplication systems discover and exploit redun-
dancies between different data blocks. The most com-
mon approach divides data into chunks and identifies
redundancies via fingerprints. The file content can be
rebuilt by combining the chunk fingerprints which are
stored sequentially in a file recipe. The corresponding
file recipe data can occupy a significant fraction of the
total disk space, especially if the deduplication ratio is
very high. We propose a combination of efficient and
scalable compression schemes to shrink the file recipes’
size. A trace-based simulation shows that these methods
can compress file recipes by up to 93%.

1 Introduction

The amount of data, which needs to be stored, increases
permanently. Deduplication has proven to be a viable
approach to reduce the resulting capacity demands, es-
pecially for backup workloads. Typically, deduplication
systems divide files or blocks into chunks and identify
redundant chunks by comparing their cryptographic fin-
gerprints. Different indexes are used to manage the rela-
tions between files and chunks, which require additional
capacities beside the deduplicated data.

The chunk index contains the fingerprints of the stored
chunks [11, 12, 17, 25]. Simply storing the chunk index
on disk would lead to a disk bottleneck, as every write
operation triggers multiple index lookups. Previous re-
search focused on the chunk index and has been able to
overcome the disk bottleneck [12, 31].

However, every deduplication system has an addi-
tional persistent index to store the information that is nec-
essary to rebuild file content based on file recipes [4, 6,
13, 23, 25, 27–29], a term introduced by Tolia et al. [26].
A file recipe contains a list of chunk identifiers. Each
of these chunk identifiers is the cryptographic fingerprint
for one specific chunk. These fingerprints point to data

ino 11223, size 124, type 0100000, ...

89b128c13c4b65bfac07372713fa697793d5dcf2, size 124

ino 11869, size 24851, type 0100000, ...

165424b83bc801ef21ba56b729489d81054c50e8, size 7645

041e4ae1bbc90bf227c73986c56c7f63dde37637, size 8094

395c8f17aca5fb16029934e4df1f2fe6ee9095bd, size 9112

Figure 1: Illustration of file recipes.

chunks on storage, similar to block pointers in standard
file systems point to disk blocks. Using the file recipe,
the original file contents (denoted as logical data) can be
reconstructed by using the uniquely identifiable chunk
data. To reconstruct the logical data the fingerprints are
read sequentially and their associated data chunks are
loaded and concatenated. Figure 1 shows two exemplary
file recipes.

One difference to the file system block pointers used
in standard file systems is the size of pointer data type.
Usually the pointer in a standard file system is stored in
at most 64 bit. All data deduplication systems, where
it is known how the mapping from a file to the dedupli-
cated contents is stored, use file recipes that store cryp-
tographic fingerprints. In these systems the used finger-
prints have a size of at least 20 byte [4, 13, 25, 27–29].

The research on data deduplication largely ignored the
management of file recipes. The reason is that it is un-
likely that file recipes are the performance bottleneck for
the system throughput. However, the file recipes may
occupy a significant portion of the overall storage in a
backup deduplication system.

A file recipe stores 20 byte for each referenced chunk
if SHA-1 is used. Therefore, the file recipes grow lin-
early with the size of the stored logical data. With an
average chunk size of 8 KB, a TB of logical data requires
2.5 GB memory to store the corresponding file recipes.
Assuming weekly full backups with a retention period
of 52 weeks and a backup size of 20 TB, the file recipes
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have a size of at least 2.4 TB.
The physical capacity used to store the data on the

other hand is only slowly growing over time. For exam-
ple, Zhu et al. report a compression factor of 40.63 for
daily backups by applying deduplication [31]. Assum-
ing an internal data deduplication ratio within a backup
run of ir = 0.35, a temporal deduplication ratio between
weekly full backups of tr = 0.95, and a data compression
ratio of 0.5, the post-deduplication data for one year has
an estimated size of 33.5 TB for a weekly backup size of
20 TB.

However, daily full backups and/or longer retention
periods become more common. If daily backups with
a retention period of a year are used, assuming a slightly
higher temporal deduplication between the daily backups
of tr = 0.99, the post-deduplicated data has an estimated
size of 43 TB for a 20 TB backup. The file recipes’ size
grows from 2.4 TB for weekly full backups to an esti-
mated size of 17.1 TB. Therefore, they already occupy
about 40% of the disk space that the deduplicated data
requires to be stored.

An approach to reduce the size of the file recipes has
an important impact on the overall storage usage of a data
deduplication system, especially when considering daily
full backups in an environment with a high deduplication
ratio.

One way to reduce the file recipes’ size is to use larger
chunk sizes, e.g., 16 KB instead of 8 KB. This reduces
the number of fingerprints stored in file recipes and there-
fore also the overall size of the file recipes. However,
previous studies have shown that increased chunk sizes
decrease the deduplication ratio [16, 18, 28]. We there-
fore explore alternatives in this work.

We are comparing four compression approaches, us-
ing unique properties of data deduplication systems.
These approaches reduce the size of the file recipes by up
to 93% without having a significant impact on the system
throughput.

The first, already established approach suppresses the
fingerprint of the chunk filled with zeros (the so-called
zero chunk). This idea has been proposed by Wei et
al. [29] and is described for completeness and compar-
ison.

The other three approaches are novel contributions:
The second approach assigns to each chunk fingerprint a
shorter code word based on the number of stored finger-
prints. It uses the chunk index to derive the code words,
which form an alternative key for the chunk index en-
try. Thus, the code words can be used instead of the
full fingerprints. The third approach uses the observation
that the usage of fingerprints is highly skewed. Certain
fingerprints are more likely than others. A small set of
common fingerprints gets a short code word assigned us-
ing an explicit dictionary. Finally, the fourth approach

uses the observation that it is possible to predict the next
fingerprint in a backup data stream if the previous fin-
gerprint is known. If the next fingerprint can be correctly
predicted using the previous fingerprint as context, a spe-
cial code word is stored as a flag instead of the original
fingerprint.

The compression of file recipes is not the most press-
ing concern when designing a data deduplication system
and developing an approach to achieve a good deduplica-
tion ratio with a high performance has been the focus of
previous research. Nevertheless, file recipe compression
allows to gain significant additional capacity savings.

All presented approaches are practical, efficient, and
scalable for the usage in data deduplication systems.
While they are not limited to a concrete deduplication
system, the usability in practice may depend on the
specifc system and its design decisions, e.g., the orga-
nization of the chunk index.

2 File Recipe Compression

The idea of file recipe compression is to assign (small)
code words to fingerprints. The code word is then stored
instead of the fingerprint in the file recipe. Different ap-
proaches to select the code words are explored in this
paper.

We use three different backup data sets in this section
to motivate the approaches based on observations from
the data sets. The same data sets will later be used for
the evaluation in the next section.

All traces use Content-defined Chunking with an ex-
pected chunk size of 8 KB [14]. The first data set, called
HOME1, is based on the home directory file server of the
University of Paderborn [16]. It is a time series contain-
ing 15 weekly full backup traces of the same file system
of 440 GB (6.6 TB total). With data deduplication, the
data set size can be reduced by a factor of 1:20 to 369 GB.
The second data set, called HOME2, contains traced data
from the home directory file server at Johannes Guten-
berg University Mainz. This data set consists of 5 weekly
backups forming a total data set of 4.8 TB. Data dedupli-
cation compresses the backup data set to 779.9 GB (fac-
tor 1:6). The last data set, called ENG, contains finger-
prints for files from a file server of an engineering de-
partment backed up over 21 weeks (319 GB total). Data
deduplication is able to shrink the physical size of this
data set by a factor of 1:40 to 8.0 GB.

We describe the compression approaches in this sec-
tion, followed by the evaluation in Section 3.

2.1 Zero-Chunk Suppression
Several authors have noted before that a few chunks are
responsible for a high number of duplicates [8, 10, 11,
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16, 29]. Especially noteworthy is the chunk completely
filled with zeros (“zero chunk”). Jin et al. show that zero
chunks are common in VM disk images [10].

Several deduplication systems apply a special han-
dling for this chunk [11, 29]. It is easy to detect zero
chunks and replace them with a special code word by
pre-calculating the fingerprint of the chunk filled with ze-
ros. Zero chunks are never looked up in the chunk index
or stored on disk.

However, it can also be used to reduce the size of file
recipes as, e.g., Wei et al. propose [29]. If the special
code word assigned is small, e.g., 1 byte, the size of the
file recipe is reduced. Alternatively, it is possible to store
a bit mask in the file recipe similar to the way missing
values are handled in some databases [24].

2.2 Chunk Index Page-oriented Approach

The second approach aims to assign a code word to all
chunks that is not significantly longer than necessary to
have a unique code word for each chunk in the system.
The approach is called chunk index page-oriented be-
cause it uses chunk index’s pages to assign code words.
The approach assumes that the chunk index is imple-
mented using a paged disk-based hash table and finger-
prints are hashed to on-disk pages.

The code word consists of two parts: prefix and suffix.
The suffix is chosen using the least number of bits pos-

sible, which are still unique within the page. The code
word is aligned to byte boundaries allowing a faster pro-
cessing. The prefix of the code word denotes the page
number. The combination of suffix and prefix together
uniquely identify the fingerprint (see Figure 2).

The code word is an alternative key for the full finger-
print in the chunk index. The prefix is used to identify
the index on-disk page where the fingerprint is stored on.
Given the page contents, the fingerprint and its chunk in-
dex entry data can be found by searching in the page for
the fingerprint with the matching suffix. Therefore, it is
possible to lookup the chunk index entry corresponding
to the fingerprint without an additional index lookup.

Alternatively, the suffix can be used as an index within
the page if the chunk index entries are of a fixed size.

This approach assigns code words when the finger-
print is stored in the system for the first time. The com-
plete fingerprint/code pair is stored in the container to
allow reading an item from a container using only the
code word.

2.3 Statistical Approaches

The zero-chunk suppression assigns short fingerprints to
certain well-known fingerprints, while the chunk index

Chunk Index
Pages

h(0x12386998A0123B)

0x12386998A01233B, code word 9, container 17
0x99123AFE79AEB17, code word 0, container 90

17000 17001

... ...

17002 17003

Figure 2: Illustration of the page-oriented approach. A
fingerprint is hashed to an index page. A page-unique
code word prefix is assigned to each fingerprint. The
complete code word is 17001||9.

Table 1: Order-0 statistic for the ENG data set after 3
backups.

Fingerprint Usage count Probability Entropy
0x518843... 380,508 0.108765 3.2
0x04F90E... 7,227 0.002066 8.9
... ... ... ...
0x435123... 1000 0.001 10.0
... ... ... ...
0x6B4D0A... 3 ≈ 0 20.1

page-oriented approach provides a basic code word for
all fingerprints in the system.

The statistical approaches presented in this section
generalize the zero chunk suppression. They use statis-
tics to assign shorter code words to fingerprints based on
the probabilities of the chunk usages.

The first approach relies on the observation that the
number of references to chunks is highly skewed [16].
The assigned code words are stored in an additional (in-
memory) dictionary to allow a lookup from the code
word to the fingerprint.

The approach uses the fingerprint’s order-0 statistic.
This means the statistical model relies on a fingerprint’s
usage without looking at its context, e.g., at previous fin-
gerprints in the data stream.

Information theory provides a lower bound on the
code word length that would be achievable with this sta-
tistical model. The information content is the sum of the
fingerprint entropies. The entropy of a fingerprint h is
−log2(

usage count of h
total chunk usage ). The higher the probability of a

fingerprint, the lower is the entropy and the shorter the
optimal code word length. This skew can be observed
in all three data sets introduced before. Table 1 shows
examples of the entropy statistics of the ENG data set.
The average entropy (and therefore optimal average code
word length) is 17.3 bits per chunk using this statistical
model and an optimal compression scheme.

The approach is similar to classical text compression
using Huffman codes [9]. However, the compression of
file recipes has unique properties that render it impossi-
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fp 0x04F90E... -> usage count 7227, code word 0x2E0100

fp 0x6B4D0A... -> usage count 3   , code word N/A

code word 0x2E0100 -> fp 0x04F90E...

Chunk Index:

...

Code Word Index:

File Recipe:
fp 0x6B4D0A...  , size 1702, offset 0

fp 0x2E0100 (CW), size 8712, offset 0

Figure 3: Illustration of the statistical dictionary ap-
proach. The chunk with the fingerprint 0x04F90E... has,
based on its high usage count, a short code word.

ble to use the classic compression approaches directly:

1. The size of the code alphabet is 2160 instead of 28. It
is therefore not feasible to create full Huffman tree
in memory.

2. Data deduplication has to support random accesses.
Adaptive text compression decoders rely on parsing
the full history of a compressed data stream to build
up the same model as seen by the encoder. This
is, e.g., the reason that .tar.gz files do not provide
random access.

Since it is not practically possible to build a full huff-
man tree, we chose a relaxed way to use the skew of
the chunks for file recipe compression: If the entropy
of a chunk is below a certain threshold, a fixed size code
word is assigned to the fingerprint. The check can either
be performed in a background process or alternatively
when a write command accesses a chunk.

However, the entropy is not known in advance and
can only be estimated after some data has been written.
Therefore, we only assign code words after one or more
backups. The first fingerprints have to be stored unmod-
ified, as no code word is available.

Once a code word is assigned, it can never be revoked
as long as a file recipe uses that code word. If at some
point a chunk usage falls below a threshold, we declare
the code word as inactive and all new appearances again
use the full fingerprint. Older backup runs are eventu-
ally evicted for the backup storage system. If there is
no longer a reference to the code word stored in any file
recipe, the code word is garbage collected and the code
word becomes free again, e.g. it is possible to maintain
a separate code word usage counter in addition to the
chunk usage counter in the chunk index.

For most of the chunks, the entropy is nearly identi-
cal to the length of the code word assigned by the page-
oriented method. It is, therefore, not worthwhile to as-
sign an entropy-based code word to more than a small
fraction of the chunk.

One important assumption is that it is effectively pos-
sible to estimate the overall probability of a chunk. The

number of references to a chunk (usage count) is often
collected for garbage collection purposes. By putting this
usage count in relation to the total number of references,
the probability of a chunk can be easily calculated.

The statistical dictionary approach uses the probability
that a chunk fingerprint is referenced without using con-
text information (order-0 statistic) to build a code word
based on that.

The order-1 statistic looks at the previous chunk and
calculates the probability of the fingerprint based on that
context information.

The entropy of the order-1 model again provides us
a theoretical lower bound. In the ENG data set, the en-
tropy using the order-1 statistical model is 0.13 bits. The
statistics in the other data sets are similar (0.14 bits in
HOME1, 0.21 bits in HOME2).

The low entropy using this statistical model in backup
data streams has two main reasons: The redundant data
found by the deduplication process is usually clustered
together and forms larger sequences of redundant and
unique chunks, called “runs”. In the HOME1 data set’s
last backup the average run length of redundant chunks
without a single unknown chunk breaking the series is
449.8. The average run length in the HOME2 data
set is shorter (262.9), and it is larger in the ENG data
set (901.5). In all cases, there is a significant cluster-
ing, which forms long runs of redundant chunks. The
backup runs change only slightly from one backup run
to another and usually the backup is written sequentially.
This is one of the assumptions that empower the locality
preserving caching approaches used by EMC Data Do-
main [28].

This shows that there is only little uncertainty about
the next fingerprint if the previous fingerprint is known.
Capturing this prediction in a practical compression
scheme for the file recipes promises significant compres-
sion.

However, the information to store the order-1 model
grows quadratic in the number of chunks and is therefore
not usable in practical deduplication systems.

The approach presented here relaxes the order-1 model
and reduces the information kept per chunk to a constant
size. Considering the low entropy of the order-1 model in
the backup data streams, even a relaxed approach should
be able to predict fingerprints with high accuracy.

We use the data stream algorithm Misra-Gries to ap-
proximate the detection of frequent fingerprint pairs [19].
We therefore store k fingerprints (or code words) in the
chunk index entry. The parameter k denoting the number
of possible frequent fingerprints is used to trade accu-
racy against memory overhead. We later compare differ-
ent choices for k and also compare the relaxed approach
with the full order-1 statistics.

When a file recipe is updated, the frequent item data
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fp 0x04F90E... -> ..., prediction 0x6B4D0A... (CW 0x01)

fp 0x6B4D0A... -> ..., prediction 0xFA4910... (CW 0x01)

Chunk Index:

...

File Recipe:
fp 0x6B4D0A...  , size 1702, offset 0

fp 0x01 (SP-CW) , size 8712, offset 0

fp 0xFA4910... -> ..., prediction 0xEC1452... (CW 0x01)

fp 0x01 (SP-CW) , size 8413, offset 0

(=> 0xB4D0A)

(=> 0xEC1452)

Figure 4: Illustration of the statistical prediction ap-
proach. If the fingerprint 0x6B4D0A... occurs after
0x04F90E..., the fingerprint is replaced by the code word
0x01.

structure of the previous fingerprint is updated with this
fingerprint in the file recipe. Based on this, the data struc-
ture can be queried to receive the estimation for the fin-
gerprint that most frequently followed the previous fin-
gerprint. We select this fingerprint as the prediction can-
didate and assign a short 1 byte code word to it. Similar
to the statistical dictionary approach a code word is not
changed as long as a file recipe uses it. Instead, if even-
tually a different prediction candidate is chosen, another
free code word is used.

When data is written to the system, the prediction can-
didate based on the previous chunk is checked. If a fin-
gerprint matches the prediction candidate based on the
previous fingerprint, the code word is stored in the file
recipe. Figure 4 shows an example for this approach.
Similarly to the zero chunk code word, a bit mask in the
file recipe would be an alternative for an even tighter en-
coding.

Every b fingerprints in the file recipe, the full finger-
print (or a different kind of code word) is stored in the
file recipe. This provides an anchor so that random ac-
cesses are possible. We (experimentally) found b = 32 to
be a suitable value for a backup workload.

3 Evaluation

We evaluate the approaches using the following criteria:

1. Storage: Additional information that is stored per
chunk in the chunk index or other indexes.

2. Memory: Amount of main memory per chunk used
for compression. The memory cost does not include
temporarily used memory, e.g., for paging on-disk
data.

3. Assignment: Time when code word is assigned.
4. Background Processing: Is an additional back-

ground processing, e.g., in idle times, necessary.
5. Recipe Compression: Compression ratio of the file

recipes, evaluated based on the trace data sets pre-
sented before. The size of the original file recipes,

Table 2: Overview of recipe compression’s properties
and results. Numeric values in bytes per chunk.

Storage Memory Assignm. Backgr.
Zero-Chunks (ZC) None None Direct No

Page-based (PB) ≈ 1 None Direct No
Directory (SD) ≈ 0.24 ≈ 0.24 Delayed Yes
Prediction (SP) ≈ 20-68 None Delayed No

assuming 20 byte per chunk reference, is compared
to the size after compression.

The compression methods are first discussed individ-
ually. Later, we apply the methods together and present
the combined compression ratios. Table 2 summarizes
the properties 1-4. The compression ratios are shown in
Table 3.

The zero chunk suppression (ZC) method does not
cause any additional IO operations nor does it increases
the storage requirements. In contrast, it saves a signif-
icant amount of chunk index lookup operations if the
backup stream contains a high amount of zero chunks
and has therefore a positive performance impact.

The compression results depend on the data set: In
the ENG data set, 14.9% of the chunks references the
zero chunk. The zero chunk suppression reduces the file
recipes by 11.8%. On the other hand, the HOME1 data
set contains only 0.6% zero chunks and the HOME2 data
set contains only 0.3%. Here, the file recipes shrink by
0.5%, resp. 0.26%.

The code word length using the page-oriented ap-
proach (PB) depends on the scale of the system. In
an 8 TB configuration with 224 chunk index pages and
a page size of 4 KB, each chunk index page will hold
64 chunks on average. The balls-into-bins theory [22]
shows that with high probability no page has to store
more than 97 chunks. Therefore, a suffix length of 7 bits
is sufficient to enumerate all chunks in a page and to as-
sign a unique suffix to each of them. The prefix would
account for 24 bits, so that the final code word has 31 bits
or 4 bytes when aligned to full bytes. This 4 byte code
word would not be sufficient for a large configuration
with, e.g., 256 TB back end storage, where we have to
account for 229 chunk index pages. Here, 5 byte would
be sufficient.

The extra storage costs consist of the prefix that is
stored in each chunk entry. With 4 byte code words,
this method reduces the file recipes by 80% (75% with
5 byte). This method’s advantage is that the savings are
predictable and do not depend on the concrete data set.

When combined with other methods, the page-
oriented approach provides a base compression for all
fingerprints, while certain other approaches use even
smaller code words.
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Similar to the zero chunk approach, the savings of the
statistical dictionary approach (SD) depend on the con-
crete data set. The higher the skew of the chunk usages,
the better a dictionary compression performs.

We simulate this approach by assigning a 24-bit code
word to each chunk with an entropy smaller than 85% of
log2(n) where n denotes the number of chunks. Once a
code word is assigned in the simulation, it is never deac-
tivated or revoked.

Using this method, 0.36% of the chunks in the ENG
data set have an assigned code word after 20 backup runs.
The file recipe index size is reduced by 14.2%. In the
HOME1 data set, 0.25% of the chunks have a code word
assigned by this method resulting in a compression ratio
of 9.0%. In the HOME2, 0.07% of the chunks have a
code word, which compresses the file recipes by 3.6%.

We need to store an additional index to resolve the
code word back to its fingerprint. The index needs to
store the code word and the corresponding 20 byte finger-
print. Assuming that 0.4% (≈ 2−8) of the fingerprints are
shortened, the reverse index can be stored in main mem-
ory. For a 8 TB configuration with around 230 chunks,
4 million chunks get a code word assigned. Therefore,
the code word index has a size of approximately 128 MB
if full fingerprints are used or 32 MB if this approach is
combined with the page-based approach.

The statistical prediction approach (SP) is simulated
by assigning predictions after each backup run. Once a
prediction is assigned, it is not changed. The compres-
sion ratios with k = 2 fields for the Misra-Gries algo-
rithms are promising, the approach alone leads to a com-
pression between 69.2% (HOME2) and 82.2% (ENG).

Increasing the Misra-Gries parameter k results in a
better estimation of the most frequent following finger-
print and therefore in better predictions for the compres-
sion. With k = 4, the compression improves slightly: to
82.5% (ENG), 77.6% (HOME1), and 69.3% (HOME2).
Larger values for k do not increase the compression sub-
stantially. Even if the full order-1 statistic is maintained
(instead of using the Misra-Gries estimation) the com-
pression only increases to 82.6%, 77.6%, and 69.5%.

The statistical prediction approach stores additional
data in each chunk index entry: The k finger-
prints/counter pairs for the Misra-Gries algorithm and
a selected prediction fingerprint. Therefore, around
68 bytes need to be added for k = 2. This overhead can
be reduced to ≈ 20 bytes if combined with the page-
oriented approach.

The statistical approaches can be sensitive to long-
term aging effects where, e.g., a fingerprint is no longer
used in new backups and its entropy is increasing so that
is would not get a code word assigned. This aging effects
usually arise slowly. For the vast majority of the finger-
prints, the dictionary and the predictions remain constant

Table 3: Compression ratios (for all combinations)
ZC PB SD SP HOME1 HOME2 ENG
Yes 5.4% 2.6% 12.6%

Yes 80.0% 80.0% 80.0%
Yes 9.0% 3.6% 14.2%

Yes 77.3% 69.2% 82.2%
Yes Yes 80.1% 80.0% 80.2%
Yes Yes 9.1% 3.6% 15.9%
Yes Yes 77.3% 69.2% 84.1%

Yes Yes 80.5% 80.2% 80.8%
Yes Yes 92.2% 90.9% 93.0%

Yes Yes 79.0% 69.4% 83.7%
Yes Yes Yes 79,1% 69.5% 84.3%
Yes Yes Yes 92.2% 90.9% 93.3%
Yes Yes Yes 80.6% 80.2% 82.2%

Yes Yes Yes 92.2% 90.9% 93.1%
Yes Yes Yes Yes 92.3% 90.9% 93.3%

for a long time. In the HOME1 data set, covering 15
weeks, on average 0.7% of the dictionary code words are
deactivated per backup run, assuming that a code word
is deactivated immediately after it crosses the entropy
threshold. If the prediction is changed as soon as a differ-
ent fingerprint is estimated as more common successor,
on average 0.04% of the chunks change their prediction
per week. A full evaluation of the aging effects is beyond
the scope of this paper.

None of the approaches causes any additional IO op-
erations or require extensive locking in the critical path.
The computations are fast and could be parallelized. It
is unlikely that the computations are a bottleneck for the
system throughput.performance impact. All approaches
except the zero-chunk suppression have to store addi-
tional information, e.g., in the chunk index. This over-
head, which grows with the physical storage capacity, is
amortized by the compression savings.

The approaches can be combined: A fingerprint is al-
ways replaced by its shortest code word and, thus, can
achieve the highest compression. If all approaches are
applied, the file recipes of all data sets are compressed
by more than 90%. Most savings are created by the sta-
tistical prediction and the page-oriented approach. These
two combined achieve a compression that is within 0.3%
of the compression if all four approaches are combined.
The already established approach of zero chunk suppres-
sion has only a small effect if it is used in combination
with other compression methods. Similarly, the method
with significant main memory overhead, the statistical
dictionary approach, does not provide a substantial addi-
tional compression if it is used in combination.

4 Limitations

The approaches are designed to fit into the system archi-
tecture of the dedupv1 data deduplication system [17].
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They are not limited to this system environment, but are
not applicable in all cases. Without specific knowledge
of internal design decisions, it is impossible to claim that
the approaches work for a specific alternative system.

In this section, we discuss some of the limitations of
the compression approaches. First, all approaches as-
sume a chunking/fingerprinting based data deduplication
system. Furthermore, the main focus are backup envi-
ronments. All approaches, except the statistical predic-
tion approach, work in other environments, too. E.g.,
Jin and Miller observed a significant fraction of zero-
chunks in virtual machine disk images [10]. However,
the file recipe overhead is only getting large for full back-
ups with a high deduplication ratio. Recipe compression
may not be important in non-backup systems.

Also, the statistical approaches assume the usage of
a full chunk index. Deduplication approaches that avoid
requesting the chunk index for most of the chunks cannot
use the approaches directly.

On the other hand, the approaches might be tweaked.
One such tweak is avoiding the file recipe compression
when new data is written. Instead a background process
may rewrite recently written file recipes. One property
of the statistical compressions is that most of the com-
pression is preserved even if the statistical model is a bit
outdated.

It is an open problem how these compression ap-
proaches can be conceptually combined with approaches
as the container-locality caching approach by Zhu et
al. [31]. Another open problem are long-term aging ef-
fects. The current data indicates that the long-term ef-
fects can be handled using the deactivation approaches
sketched above, but a deeper investigation of aging ef-
fects would be worthwhile.

5 Related Work

Compression techniques are used by most deduplication
systems to reduce the size of chunks after the duplication
identification step [17, 21, 28, 31].

Multiple ways to reduce the size of the chunk index
have been proposed. Sparse indexing reduces the size
of the chunk index by only storing there a subset of the
chunks [12]. Another approach is to store only short fin-
gerprints in an in-memory chunk index and to addition-
ally compare the chunk data byte-by-byte to be safe from
(in this setting likely) hash collisions [2].

Balachandran and Constantinescu propose to use runs
of hashes for file recipe compression [3]. If a run of
hashes occurs twice in a data stream, they replace it
with the fingerprint of the first chunk and the length of
the repeated sequence. Constantinescu et al. propose to
combine repeated sequences of adjacent chunks to super-
chunks [5]. Any chunk is then either merged into a super

chunk or it is not repeated. However, both works do not
describe how to find the runs or super chunks in an effi-
cient manner.

JumboStore reduces the size of file recipes by chunk-
ing them into indirection nodes [6]. These nodes can be
reused for identical and similar files.

The skew in the chunk usage distribution and the pop-
ularity of the zero chunk have been noted before [8, 10,
11,16,29]. Wei et al. replace the zero chunk with a build-
in codeword [29].

Patterson proposed using two separate index struc-
tures: One mapping from the fingerprint to a sequentially
increased code word and one from the code word to the
on-disk location [20]. The code word length is in the
order of the logarithm of the number of stored chunks.
Therefore, it produces code words of similar length than
the page-based approach.

Also, the page-based approach is similar to dictionary
encoding in databases (see, e.g., Abadi et al. [1]). How-
ever, database dictionary encoding is usually only ap-
plied to columns with a limited, fixed cardinality and it
uses a separate lookup index. Our approach works for
billions of chunks without additional index lookups.

The statistical dictionary approach are related to clas-
sical Huffman codes [9] in that both aim to reduce the
code word size based on the order-0 statistic of the data.
The statistical dictionary approach differs in the way the
code words are assigned. Furthermore, it relaxes the
compression for the usage as file recipe compression.

Compression of index data structures is state-of-the-
art in areas like databases (e.g., [1, 7]) or information re-
trieval (e.g., [15, 30]). The techniques used there, e.g.,
page-local compression, run-length encoding, and delta-
compression within pages, are not directly applicable in
data deduplication.

6 Conclusion

We presented new compression approaches for file
recipes in deduplication systems. A combination of these
approaches allows shrinking the file recipes by up to
93%. Since file recipes can be responsible for a signifi-
cant fraction of the physical disk usage of deduplication
systems, these results enable significant overall savings.
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