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Abstract

Recently, a new technique called compare-by-hash
has become popular. Compare-by-hash is a method
of content-based addressing in which data is identi-
fied only by the cryptographic hash of its contents.
Hash collisions are ignored, with the justification
that they occur less often than many kinds of hard-
ware errors. Compare-by-hash is a powerful, ver-
satile tool in the software architect’s bag of tricks,
but it is also poorly understood and frequently mis-
used. The consequences of misuse range from signif-
icant performance degradation to permanent, unre-
coverable data corruption or loss. The proper use of
compare-by-hash is a subject of debate[10, 29], but
recent results in the field of cryptographic hash func-
tion analysis, including the breaking of MD5[28] and
SHA-0[12] and the weakening of SHA-1[3], have clar-
ified when compare-by-hash is appropriate. In short,
compare-by-hash is appropriate when it provides
some benefit (performance, code simplicity, etc.),
when the system can survive intentionally generated
hash collisions, and when hashes can be thrown away
and regenerated at any time. In this paper, we pro-
pose and explain some simple guidelines to help soft-
ware architects decide when to use compare-by-hash.

1 Introduction

Compare-by-hash takes advantage of the fact that
applications frequently read or write data that is
identical to already existing data. For example, edit-
ing a document usually involves saving the same file
with slight differences many times. Rather than
read or write the identical part of the data a sec-
ond time to the disk or network, we instead refer to
the instance of the data that we already have. Us-
ing a collision-resistant cryptographic hash, we can
quickly determine with high probability whether two
blocks are identical by comparing only their hashes
and not their contents. By some estimations, the
chance of a hash collision is much lower than the
chance of many kinds of hardware errors, and so
many feel comfortable ignoring the possibility of a

hash collision.

Compare-by-hash made its first appearance in 1996
in rsync[26], a tool for synchronizing files over
the network, and has since been used in a num-
ber of projects, including LBFS[14], a distributed
file system; Stanford’s virtual computer migration
project[19]; Pastiche[7], an automated backup sys-
tem; OpenCM[21], a configuration management sys-
tem; and CASPER[24], a block cache for distributed
file systems. Venti, a block archival storage sys-
tem for Plan 9, is described as using compare-by-
hash[18] but as implemented it checks for collisions
on writes[9]. Compare-by-hash is also used in a
wide variety of document retrieval systems, content-
caching proxies, and many other commercial soft-
ware products.

Unfortunately, many uses of compare-by-hash do not
take into account two important but lesser-known
properties of cryptographic hash functions: they
are computationally expensive, and they are rela-
tively short-lived compared to the software applica-
tions that use them. “Computationally expensive”
means that, in many applications, compare-by-hash
has worse performance than traditional techniques.
“Short-lived” means that the most important prop-
erty of a cryptographic hash — collision resistance
— is defeated by advances in cryptanalysis within a
few years of the hash’s introduction, typically 2-10
years (see Table 1).

We wrote this paper in response to a common and
urgent question from our colleagues: When should I
use compare-by-hash? Many want a comprehensive
and practical review on the subject to give to col-
leagues and graduate students. Others want a sec-
ond opinion on the design of a system using compare-
by-hash. In this paper, we propose and explain a
practical set of guidelines to help system architects
decide when to use compare-by-hash. The guidelines
can be summarized by the following questions:

1. Will compare-by-hash provide some benefit —
save time, bandwidth, etc.?



Name Introduced Weakened Broken Lifetime Replaced by
MD4 1990 1991 1995 1–5 yrs MD5
Snefru 1990 — 1993 3 yrs MD5
MD5 1992 1994 2004 2–10 yrs SHA-1
MD2 1992 1995 abandoned 3 yrs SHA-1
RIPEMD 1992 1997 2004 5–12 yrs RIPEMD-160
HAVAL-128 1992 — 2004 12 yrs SHA-1
SHA-0 1993 1998 2004 5–11 yrs SHA-1
SHA-1 1995 2004 — 9+ yrs SHA-256 (?)
RIPEMD-160 1996 — — 9+ yrs —

Table 1: Lifetimes for some cryptographic hash functions[20, 6, 28, 3].

2. Is the system usable if hash collisions can be
generated at will?

3. Can the hashes be regenerated with a different
algorithm at any time?

If the answer to all of these questions is yes, then
compare-by-hash is probably a reasonable choice.

We begin with some definitions and examples in Sec-
tion 2 to provide motivation and some background
for the rest of the paper. We then describe our pro-
posed guidelines in more detail in Section 3. We go
into more depth on how to estimate the performance
of compare-by-hash relative to other techniques in
Section 4. We discuss alternatives to compare-by-
hash in Section 5, and conclude with a summary of
our recommendations.

2 Background

2.1 Motivation

We wrote this paper in response to requests
from many of our colleagues. Understanding the
caveats and implementation issues involved in us-
ing compare-by-hash is not trivial. For example,
we found that many people view cryptographic hash
functions as magic boxes that spit out unique identi-
fiers, rather than as human-designed mathematical
functions with real-world limits and costs (and even
political considerations). Those who have success-
fully implemented systems using compare-by-hash
find that others following their lead missed some
of the more subtle points of their arguments, and
wanted a comprehensive paper explaining the is-
sues. For some computer scientists, the implica-
tions of compare-by-hash are obvious and need not
be spelled out; for others, this paper will fill a small
but important gap in the computer science litera-
ture.

2.2 Cryptographic hash functions

A hash function takes a variable length input and
produces a fixed length output, the input’s hash
value. TCP checksums are an example of a sim-
ple hash function: XOR the TCP header and data,
16 bits at time. A cryptographic hash function is a
hash function for which it is computationally easy
to calculate the hash value of an input, but difficult
to find an input that has a particular hash value,
or to find two inputs that hash to the same hash
value[20]. Hash functions with this property are of-
ten called collision-resistant (the term collision-free
is misleading since a hash function must have colli-
sions as long as it has more inputs than outputs).

Unfortunately, analysis of cryptographic hash func-
tions and therefore the ability to generate hash colli-
sions trails the creation of cryptographic hash func-
tions by only a few years. Cryptographic hash func-
tions thought impregnable when introduced quickly
become trivial to break within a few years (see Ta-
ble 1). So far, the longest-lived cryptographic hash is
HAVAL-128, with 12 years between its introduction
and the complete break of the algorithm. The most
popular unbroken cryptographic hash left, SHA-1,
is now 9 years old and has been significantly weak-
ened, with successful attacks up to at least round
40 of the algorithm, out of a total of 80 rounds of
computation[3]. Cryptographic hash functions usu-
ally operate on a part of a message for a certain
number of rounds of computation, then use the out-
put from the previous part of the message as input to
the next set of calculations on the next part of the
message. More rounds usually makes the function
harder to break, but more expensive to compute.

Cryptographic hash functions are very expensive to
compute; SHA-1, for example, requires 80 rounds of
mathematical computations on each 16-byte section
of the input[15]. The computation can’t be paral-
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lelized; the output of the previous 16-byte section
is used as one of the inputs in the calculation for
the next 16-byte section. Most non-cryptographic
checksum functions are much faster to compute than
cryptographic hashes, and often have been designed
specifically for speed. No matter how fast modern
hardware can compute cryptographic hash functions
(perhaps with the aid of built-in hardware), com-
puting a simpler checksum, not to mention doing
a direct memory comparison, is orders of magni-
tude faster than computing a cryptographic hash
on the same data. We recommend reading through
the specification for SHA-1[15] to get a feel for the
amount of computation involved.

Cryptographic hash functions are so expensive to
compute, in fact, that they have formed the basis of
at least one anti-spam measure, called hashcash[1].
In hashcash, each email must contain a proof-of-
work from the sender in the form of a string con-
taining the date, the recipient’s email address, and
a string of random bits. When this string is hashed
using SHA-1, it must form a partial hash-collision
with a specific hash value (the hash value of all ze-
roes, specifically). In order to find the right random
bits to produce a partial hash-collision, the sender
must repeatedly hash the string with many differ-
ent random values until it finds a sufficiently long
partial collision. This takes a significant amount of
CPU time — approximately half a second in the
current implementation — and so guarantees that
the sender is severely rate-limited in the amount of
email it can send, and is therefore unlikely to be a
spammer.

2.3 Compare-by-hash

In compare-by-hash, blocks of data are identified
by their cryptographic hashes; blocks with identical
hashes are assumed to be identical. This is differ-
ent from the common use of hashes, in which blocks
with different hash values are known to be different,
and blocks with the same hash are probably (but
not certainly) identical.

Compare-by-hash can be an advantage in many
cases, where it is cheaper to compute and store or
send a cryptographic hash than to directly compare
the blocks. One use of compare-by-hash is to reduce
bandwidth usage. Before sending a block, the sender
first transmits the hash of the block to the receiver.
The receiver checks to see if it has a local block with
the same hash value. If it does, it assumes that it
is the same block as the sender’s. In the case of a
4096-byte block and a 160-bit hash value, this sys-
tem can reduce network traffic from 4096 bytes to

Input 1
d131dd02c5e6eec4693d9a0698aff95c
2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a
085125e8f7cdc99fd91dbdf280373c5b
960b1dd1dc417b9ce4d897f45a6555d5
35739ac7f0ebfd0c3029f166d109b18f
75277f7930d55ceb22e8adba79cc155c
ed74cbdd5fc5d36db19b0ad835cca7e3

Input 2
d131dd02c5e6eec4693d9a0698aff95c
2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a
085125e8f7cdc99fd91dbd7280373c5b
960b1dd1dc417b9ce4d897f45a6555d5
35739a47f0ebfd0c3029f166d109b18f
75277f7930d55ceb22e8adba794c155c
ed74cbdd5fc5d36db19b0a5835cca7e3

MD5 hash of input 1
a4c0d35c95a63a805915367dcfe6b751

MD5 hash of input 2
a4c0d35c95a63a805915367dcfe6b751

Table 2: Two inputs with colliding MD5 hash values, in
hexadecimal format with differing bytes in bold.

20 bytes, or about a 99.5% savings in bandwidth.

This is an incredible savings, but the cost is the risk
of a hash collision. Using a standard approximation,
we estimate that to have a 50% chance of finding a
randomly occurring collision in a hash with n bits
of output, we need about 2

n
2 inputs. (Note that

this is an upper bound only[2].) For a 160-bit out-
put, we need about 2

160
2 or 280 inputs to have a

50% chance of a collision. Put another way, we ex-
pect with about 48 nines (“0.” followed by 48 nines,
approximately 1 − 2−160) of certainty that any two
randomly chosen inputs will not collide, whereas em-
pirical measurements tell us we have only about 8
or 9 nines of certainty that we will not encounter an
undetected TCP error when we send the block over
the network[22]. In the face of much larger sources of
potential error, the error added by compare-by-hash
appears to be negligible. However, this calculation
neglects the very real fact that cryptographic hash
functions are under constant attack. Now that a col-
lision has been found in MD5[28], if you are given a
choice of two inputs, you can make the chance of a
hash collision in MD5 equal to 1, not 2−128 — see
Table 2 for two inputs that collide.
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2.4 Example applications

We will use several example applications to illustrate
our guidelines. rsync[26] is an application for syn-
chronizing files, either locally or over the network.
When operating in the default mode and compar-
ing files remotely, it uses compare-by-hash to detect
parts of a file that have not changed. LBFS[14] is
a network file system that uses compare-by-hash to
identify chunks of data shared among all files stored
on the server. BitKeeper[4] is a source control sys-
tem that does not use compare-by-hash. It instead
maintains a complete history of changes made; when
synchronizing two source trees, it sends only the
changes that are not present in the target tree.

3 Guidelines for using compare-by-
hash

In the introduction, we gave the following rules for
deciding when to use compare-by-hash:

1. Will compare-by-hash provide some benefit —
save time, bandwidth, etc.?

2. Is the system usable if hash collisions can be
generated at will?

3. Can the hashes be regenerated with a different
algorithm at any time?

If the answer to each of these questions is yes, then
compare-by-hash is probably a good technique. In
this section, we’ll discuss each of these questions in
more detail.

3.1 Does compare-by-hash provide a
benefit?

The first question the software designer should ask
herself is whether using compare-by-hash results in
an overall improvement of some sort — for exam-
ple, saving storage space, using less bandwidth, or
reducing implementation complexity. Understand-
ing when compare-by-hash is a benefit is more diffi-
cult than it appears at first glance. Without a clear
understanding of the computational cost of com-
puting and comparing cryptographic hashes, usage
patterns, and alternative approaches, we can easily
end up with a slower, less efficient, and less correct
system than we began with. For example, a fre-
quent proposal is to use compare-by-hash to com-
pare blocks of data located on a single system to
eliminate duplicates, e.g., to increase the effective
size of a disk cache by keeping only copy of iden-
tical blocks. In this case, it is far more efficient

to compute a simple, fast checksum to find poten-
tial matches, and then directly compare the data,
byte by byte, to confirm duplicates. VMWare’s ESX
server uses this technique to coalesce identical mem-
ory pages[27]. This section will give an intuitive
overview of the issues involved; for a more rigorous
analytical approach, see Section 4.

3.1.1 Trading computation for bandwidth

Compare-by-hash allows you to trade computation
for bandwidth, allowing you to send only the hash
of a block of data, rather than the block itself. The
most famous example of this tradeoff is rsync, an
application for synchronizing files. When comparing
two files in remote locations, rsync compares MD4
hashes of blocks likely to be identical; if they match,
it assumes they are identical and does not send that
block over the network. This is an advantage when
it is faster to compute a block’s MD4 checksum than
it is to send it over the network. However, in many
cases (such as most local area networks or high-speed
Internet connections), it is faster to send the data
than compute its MD4 checksum.

3.1.2 Trading computation time for storage

You can also trade computation time for storage
space; for example, you can record whether you have
seen a particular block before by storing only the
hash and not the block itself. Here also, storage
space must be tight enough to warrant the perfor-
mance hit, since a cheap checksum combined with
direct compare will perform better. Note that a
recent survey showed most desktop disks are half
full[8], and a recent mathematical analysis showed
that peer-to-peer data-sharing networks are limited
by cross-network bandwidth rather than disk space,
a situation that will worsen with current hardware
trends[5]. Be certain that the savings in disk space
is worth the performance hit.

3.1.3 Trading computation time for imple-
mentation complexity

For many programmers, the greatest attraction of
compare-by-hash is that it greatly simplifies man-
agement of state information. Many programmers
respond to criticism of the correctness of compare-
by-hash by pointing out that a more complex im-
plementation which does not use compare-by-hash
is more likely to have a bug, and therefore be in-
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correct more often than compare-by-hash. After all,
rsync was originally developed not because using
diff and patch (two common UNIX source man-
agement tools) was too slow or used too much band-
width, but because patch management using diff
and patch was too hard — a statement that is dif-
ficult to disagree with. Andrew Tridgell, describing
the source of his inspiration for rsync, wrote: “It
was possible to transfer just the changes by keeping
original files around then using a differencing utility
like diff and sending the diff files to the other end
but I found that very inconvenient in practice and
very error prone[25].”

This is a valid point, but in many cases the com-
parison of error probability is not so straightforward
— see Sections 3.2 and 3.3 for more detail. In ad-
dition, in many cases the tradeoff includes slower
performance. rsync is simpler to implement than
BitKeeper, a source control system which does not
use compare-by-hash, but BitKeeper sends less data
over the network than rsync in many cases because
it keeps state about which files have changed since
the last synchronization.

3.1.4 Cryptographically strong checksums
needed for other reasons

Finally, an application may have some need to gen-
erate cryptographically strong checksums on all data
in any case — e.g., to detect malicious tamper-
ing — in which case cryptographic hash values are
“free” and no performance tradeoff exists. However,
in most applications the authors have encountered,
compare-by-hash comes first and detection of mali-
cious tampering is what the user gets “for free,” and
is not really a requirement of the system.

3.2 Is the system usable if hash colli-
sions can be generated at will?

The next question to ask is if the system is still us-
able when hash collisions occur. Another way to ask
this question is, “Can MD4 be used as the hash func-
tion?” Some readers might be surprised to hear that
the most effective and successful implementations of
compare-by-hash use MD4 as the hash algorithm,
despite the fact that collisions in MD4 can be triv-
ially generated — Xiaoyun Wang recently claimed
that they can be calculated “by hand”[28]. The an-
swer to this question takes into account many differ-
ent factors.

3.2.1 Why worry about hash collisions?

For any given system using compare-by-hash, hash
collisions are inevitable. As we stated in the intro-
duction, and showed in Table 1, it is only a matter
of time between a cryptographic hash function’s in-
troduction and its eventual demise at the hands of
cryptanalytical research. Currently, any system us-
ing MD5 and compare-by-hash can, at the whim of
those who provide its inputs, suffer a hash collision
(see Figure 2 for two different messages with the
same MD5 hash value). MD5 was the state-of-the-
art in hash functions as recently as 1995; in 2004
no one can state that an MD5 collision is less likely
than a hardware error. How long until the same is
true of SHA-1?

3.2.2 Is the hash value large enough to avoid
accidental collisions?

This may seem obvious, but the hash value must
have enough bits to avoid accidental collisions. This
is slightly tricky, both because accidental collisions
occur with a much smaller number of inputs than
expected, and because data set size grows more
quickly than expected. Intuitively, one might ex-
pect a 50% chance of a hash collision after about
half the number of possible outputs are produced;
for an n-bit hash value, this would require 2n−1 in-
puts. In reality, it takes only about 2

n
2 inputs to

have a 50% chance of collision. This is exempli-
fied by the “birthday paradox” — how many peo-
ple do you need in a room to have a 50% or greater
chance that two of them have the same birthday?
The answer is 23 people (assuming that birthdays
are uniformly distributed and neglecting leap years).
This is easier to understand if you realize that there
are 23 × (22/2) = 253 different pairs of people in
the room. Second, data sets grow at an exponential
rate. Disk capacity is currently doubling about ev-
ery 9 months[23]; while actual data stored lags disk
capacity, we can reasonably estimate data set size
as doubling every year. Given the birthday para-
dox, this chews up about two bits of hash output
per year. If, for example, 16 bits of hash output is
insufficient now, then 32 bits of hash output will be
insufficient in 16 years or less.

3.2.3 Can malicious users cause damage by
deliberately causing hash collisions?

Today, a malicious user can generate a hash collision
in a system using compare-by-hash and MD5 — or

5



MD4, HAVAL-128, MD2, or 128-bit RIPEMD[28].
However, this isn’t a concern for many systems us-
ing compare-by-hash because deliberate hash colli-
sions can only harm the user generating the colli-
sions. rsync still uses MD4 as its hash algorithm be-
cause the “address space” created by the person us-
ing rsync is not shared with any other users. It isn’t
even shared across files — the hash values are only
compared with the hash values in the second copy
of the same file. If someone deliberately creates a
file containing blocks with identical MD4 checksums
and uses rsync to transfer it, that user will end up
with a corrupted file — one they could create them-
selves without the bother of generating MD4 hash
collisions.

Systems where the hash value “address space” is
shared are vulnerable to deliberately generated hash
collisions and are not good candidates for compare-
by-hash. LBFS[14] and Pastiche[7] are two systems
using compare-by-hash where many users share the
same address space. A hash collision in LBFS may
result in either a corrupted file for some other user
or the disclosure of another user’s data. The mali-
cious user can control what data is written to the
LBFS server by creating data whose value collides
with data it predicts another user is going to write.

3.2.4 Can the system detect and recover
from hash collisions?

In many systems, compare-by-hash is used only
when caching or distributing data; if a collision oc-
curs, the good data still exists somewhere and can
be recovered. In rsync, collisions in the MD4 check-
sum on individual blocks are checked for by compar-
ing the MD5 checksum for the entire file (not fool-
proof, but catches most errors); if the whole file MD5
checksum does not match, the algorithm runs again
with a different seed value for MD4. If the user sus-
pects that there has also been a collision in the MD5
checksum, she can detect collisions by doing a full
compare of the two files. In the end, the correct copy
of the file still exists and is not altered by any hash
collisions. In LBFS, on the other hand, a hash colli-
sion is not detectable, and results in the permanent
loss of the colliding data, absent any outside effort to
copy or save the data on the client machine. Finally,
any application of compare-by-hash must have some
fallback mode in which the user can choose not to
use compare-by-hash at all, in case their data does
have hash collisions.

3.3 Can the hashes be regenerated with
a different hash function at any
time?

Systems in which hash values can only be generated
once and are stored indefinitely will fall victim to
short cryptographic hash function lifetimes and the
growth of data sets, and will be unable to recover
from hash collisions when they occur. A crypto-
graphic hash value is only an ephemeral and tem-
porary “unique” signature; systems which depend
on the collision-resistance of a particular hash func-
tion for more than a handful of years are doomed to
obsolescence. To combat this, the system must be
designed such that the cryptographic hash function
can be changed at will, and the hash values of the
data being compared can be regenerated when nec-
essary. rsync generates hashes anew every time it
is run; hash values are used only to address blocks
in the cache in LBFS and can also be regenerated as
needed.

3.4 Example of correct use of compare-
by-hash: rsync

rsync, for example, is a perfectly reasonable use
of compare-by-hash. rsync regenerates hashes on
each invocation, and automatically uses different
seed constants when the whole-file checksums do not
match (indicating a collision has occurred in the per-
block checksums). The “address space” of hashes is
limited only to the blocks in the files the user has re-
quested to be synchronized, keeping collision proba-
bilities much lower than in other systems. Its use is
optional, so users who do wish to transfer files full
of blocks with the same MD4 checksum can choose
a different transport mechanism. The most telling
point in favor of rsync is that it uses MD4 (for which
collisions can be trivially generated) as its crypto-
graphic hash, but it is still usable and useful today
because malicious collisions can only be generated
by the owner of the files being synchronized. rsync
does not claim to be faster than diff-and-compress
all or even most of the time, it only claims to be
simpler, more convenient, and faster for a important
subset of file synchronization workloads.

4 Estimating the performance of
compare-by-hash

To help estimate whether compare-by-hash provides
a performance benefit compared to traditional tech-
niques, we will give an in-depth analysis of its ef-
fect on total elapsed time under various conditions.
The three comparisons we make are compare-by-
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hash vs. whole file, compare-by-hash plus compres-
sion vs. whole file compression, and compare-by-
hash plus compression vs. diff-and-compress (we
will explain these terms further in the following sec-
tions). Depending on the relative bandwidth of the
hashing function and of the network, the amount of
data changed, and the compressibility of the data,
compare-by-hash can be either slower or faster than
traditional techniques.

4.1 Sample implementation benchmarks

This section gives a few representative real-world
measurements of the various hashing, differencing,
and compression algorithms to use later on in our
analysis. This section is not intended to (and does
not) prove the superiority of one technique over an-
other. We examine rsync, which uses compare-by-
hash when operating on remote files, diff, a con-
ventional differencing program optimized for source
code, and xdelta, a conventional differencing pro-
gram that works on binary files as well as text.

The benchmarks were run on a 2.8 Ghz Pentium 4
with one hyperthreaded CPU, 1.25 GB of memory,
and a 512 KB L2 cache, running Red Hat 9.0 with
Linux kernel version 2.4.20-20.9smp. Elapsed time
and CPU time were measured using /usr/bin/time.
Each benchmark was run three times and the time
from the third run used; usually the difference be-
tween the second and third runs was less than a
tenth of second. The system had enough mem-
ory that the files stayed in cache after the initial
run. The two data sets we compared were the Linux
2.4.21 and 2.4.22 source trees. The bandwidth of the
difference generating programs was measured rela-
tive to the size of the newest version of the files alone,
rather than both the old version and the new version.
For example, if we ran a difference generator on two
files, where the old file is 2 MB and the new file is 3
MB, and it took one second to run, the bandwidth
of that difference algorithm is 3 MB/s. The hit rate
is the percentage of data that is unchanged; we ap-
proximate it by subtracting the patch size from the
total size of the new version. For some comparisons,
we concatenated the files together into one large file,
sorted by file name. For the case where a file tree
was differenced recursively, the total size of the tar-
get files is that as measured by du -s, which takes
into account the directory metadata associated with
the files. All output was sent to /dev/null when
measuring the bandwidth of differencing algorithms
to help reduce file system performance as a factor.

The bandwidth and CPU time for the various dif-
ferencing algorithms are in Table 3, and various

2.4.21 vs. 2.4.22, file tree
Command Bandwidth CPU timea

diff -ruN 8.65 MB/s 10.7 s
diff -rN 16.9 MB/s 10.4 s

Null update of 2.4.22, file tree
rsync -r 4.51 MB/s 11.2 s
diff -ruN 132.45 MB/s 1.35 s

2.4.21 vs. 2.4.22, concat. files
xdelta 21.4 MB/s 8.35 s
xdelta -n 29.2 MB/s 6.18 s

Null update of 2.4.22, concat. files
rsync 9.20 MB/s 3.32 s
xdelta 95.3 MB/s 1.90 s

Table 3: Performance of differencing utilities on the
Linux 2.4.21 and 2.4.22 source trees.

aLocal CPU time only — for rsync, the remote rsync pro-
cess uses significant CPU time.

statistics related to the generated differences are in
Table 4. diff and rsync were run in recursive
mode, comparing the 2.4.21 and 2.4.22 versions of
the Linux kernel source file by file. The rsync runs
used the rsync daemon and its native network pro-
tocol. We ran rsync on source trees with different
timestamps on unchanged files, because rsync nor-
mally assumes that files with identical timestamps
and sizes are the same and does not compare the
contents. While timestamp comparison is a very ef-
ficient optimization for rsync’s normal workloads, it
does not help us compare the efficiency of compare-
by-hash because it is doing compare-by-timestamp
for unchanged files, not compare-by-hash. We used
the log messages from rsyncd to estimate patch size.
Since xdelta has no support for recursively generat-
ing differences, we sorted the files by pathname and
concatenated them into one large file for each version
and ran xdelta and rsync on the concatenated files.
The “-n” option to xdelta turns off generation of
MD5 checksums on the source and target file (this
checksum is a sanity check and is not required for
correct operation). All command line options used
during the runs are shown in Table 3.

Table 5 shows the bandwidth and compression factor
of several common compression programs, as mea-
sured on the patch from Linux 2.4.21 to 2.4.22 as
generated by diff -ruN. Table 6 shows the amount
of hash data transferred by rsync relative to total
data size.
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Command Patch size Comp. patch Comp. factor Hit rate
diff -rN 9.53 MB 2.10 MB 4.54 0.95
diff -ruN 30.0 MB 6.30 MB 4.75 0.83
rsync -r 24.7 MB 6.35 MB 3.89 0.86
xdelta (concat. file) 8.82 MB 3.55 MB 2.48 0.94

Table 4: Patch size, compressed patch size, compression factor, and percentage of data unchanged for differences
generated.

Variable name Definition Sample value
Bn Bandwidth of network 0.100 MB/s
Bh Bandwidth of hashing algorithm 5 MB/s
Bd Bandwidth of differencing algorithm 17 MB/s
Bc Bandwidth of compress algorithm 12 MB/s
Bu Bandwidth of uncompress algorithm 82 MB/s
Bcu Average bandwidth of compress/uncompress 10 MB/s
Sh Size of hash 20 bytes
Sb Size of block 2048 bytes
Sh/Sb Ratio of hash information to block size 0.008
Nb Number of blocks —
Cf Compression factor 4
Hr Hit rate (fraction of blocks that are the same) 0.85
Mr Miss rate (fraction of blocks that have changed) 0.15

Table 7: Variable names, definitions, and sample values.

Program Bandwidth Comp. factor
gzip 11.6 MB/s 4.75
gunzip 81.6 MB/s —
gzip + gunzip 10.2 MB/s —
zip 11.6 MB/s 4.54
unzip 60.0 MB/s —
zip + unzip 9.73 MB/s —
bzip2 2.44 MB/s 5.57
bunzip2 7.81 MB/s —
bzip2 + bunzip2 1.86 MB/s —

Table 5: Compression algorithm performance.

Hash, etc. data Total data Percent of total
1.49 MB 180.21 MB 0.83%

Table 6: Size of rsync hashes and other metadata vs.
total data.

4.2 Variable names

For convenience, we define all the variable names
used in this section, along with representative values,
in Table 7.

4.3 Simplifying assumptions

In order to make the analysis tractable, we make
the following simplifying assumptions. Network la-
tency is not a major factor, so we ignore the time for
round trips. If network latency dominates network
bandwidth, then methods of reducing the amount
of data transferred are less interesting. Compare-
by-hash is relatively ineffective on compressed files;
small changes in compression input often result in
widespread changes throughout the file, leaving little
commonality in terms of sequences of bytes between
the old file and new file. Some techniques have been
proposed to reduce this effect[25], but they have not
been widely adopted. Startup and tear-down costs
and other constant factors are negligible compared
to costs proportional to file size. Old and new files
are the same size, and the block size (the unit of data
over which hashes are generated) is constant. Hash
data is incompressible, because the hashes need to
have very high entropy (high randomness) to be ef-
ficient. Difference application time is dominated by
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file system overhead, and can therefore be ignored
for purposes of this analysis.

We make somewhat more radical simplifying as-
sumptions about the differencing algorithms, both
conventional and compare-by-hash. We assume that
the differences generated by compare-by-hash and
other differencing algorithms are about the same
size, and that the algorithm speed is independent of
the amount of differences, even though in reality dif-
ference algorithms are sensitive to the amount and
type of changes. We should also note that many
difference algorithms behave well only in a certain
range of file sizes and with a certain type of file
data. For example, diff is really only efficient for
relatively short source code files with insertions and
deletions at line break boundaries, while xdelta and
rsync can handle any type of file data with shared
sequences of bytes.

4.4 Compare-by-hash vs. whole file

We first examine the total time to synchronize two
files using compare-by-hash without compression of
the changed blocks versus the time to send the en-
tire uncompressed file. We can use this exercise to
define the domain of interest for the ratio of hash
function bandwidth to network bandwidth. Obvi-
ously, if we can send the whole file faster than we can
compute the hash function over it, then compare-by-
hash won’t be faster.

The time to send the whole file, Tw, is the time to
send the data over the network:

Tw =
NbSb

Bn

The time to send the file using compare-by-hash, Th,
is the time to compute the hashes, send the hashes,
and then send the changed blocks:

Th =
NbSb

Bh
+

NbSh

Bn
+

NbSb

Bn
Mr

Note that we are assuming that the hashing of the
second copy of the file can be done simultaneously
and won’t add to the elapsed time. Compare-by-
hash is an advantage when:

NbSb

Bh
+

NbSh

Bn
+

NbSb

Bn
Mr ≤

NbSb

Bn

Multiply through by Bn/NbSb, let Sh/Sb = 0.008
(from Table 7), move Mr to the right side and re-
member that (1−Mr) = Hr, and we get:

Bn

Bh
+ 0.008 ≤ Hr

In all the cases we examine, Sh/Sb has a negligible
effect on the total time, so we ignore it from now on
(giving an advantage to compare-by-hash). In this
case, it raises the required hit rate by less than 1%.
This gives us:

Bn

Bh
≤ Hr

This equation gives us the expected result that
compare-by-hash can only be a win when the net-
work bandwidth is lower than the hash algorithm
bandwidth, because the maximum hit rate is 1. The
lower the network bandwidth relative to the hash
bandwidth, the lower the hit rate needs to be for
compare-by-hash to be a win.

Let’s apply this equation to a real-world case where
compression isn’t possible: using compare-by-hash
to write out to disk only dirty subpages of a super-
page being evicted from memory[16]. Compression
can’t be used because the disk hardware doesn’t un-
derstand it, and the memory management unit pro-
vides only one dirty bit per superpage, so our only
choices are using compare-by-hash to write out the
dirty subpages, and writing out the entire superpage.
In this case, the “network bandwidth” is the band-
width to disk, and the hash bandwidth is the band-
width of SHA-1 on inputs of size 8 KB, the smallest
page size on the system studied. On our benchmark
system, we measured Bn = 32 MB/s and Bh = 124
MB/s.

Bn

Bh
=

32
124

= 0.26

A hit rate of at least 26% is required for compare-
by-hash to be faster than writing the plain data; a
dirty superpage must contain on average fewer than
74% dirty subpages for compare-by-hash to be a win.
This assumes that a superpage is only hashed if it
is written to; in this implementation all superpages
were hashed on the initial read from disk, which
contributed to a degradation in performance of 15–
60%[16]. The authors suggest computing the initial
hashes of superpages only when the CPU is idle.
Even with this optimization, unless the dirty super-
page is more than 26% clean, it’s still faster just to
write out the entire page rather than finding and
writing out only the dirty subpages (neglecting the
not inconsiderable fixed per-I/O cost of writing out
many small pages versus one large page).
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4.5 Compare-by-hash plus compression
vs. whole file compression

We next compare compare-by-hash and compression
of the changed blocks versus compressing and send-
ing the entire file.

The elapsed time for compare-by-hash plus compres-
sion, Th+c, is the time to compute the hashes plus
the time to compress the changed blocks plus the
time to send the compressed changes:

Th+c =
NbSb

Bh
+

NbSb

Bcu
Mr +

NbSb

BnCf
Mr (1)

The elapsed time for compressing and sending the
entire file, Tc, is the time to compress the entire file
plus the time to send the compressed file:

Tc =
NbSb

Bcu
+

NbSb

BnCf

Compare-by-hash is a win when:

NbSb

Bh
+

NbSb

Bcu
Mr +

NbSb

BnCf
Mr ≤

NbSb

Bcu
+

NbSb

BnCf

Rearranging, we get:

(
Bn

Bh
)/(

Bn

Bcu
+

1
Cf

) ≤ Hr (2)

Figure 1 is a plot of the minimum hit rate neces-
sary for compare-by-hash to be faster for ratios of
network bandwidth to compression and compare-
by-hash bandwidth ranging from 0 to 1, and with
Cf = 4 (see Tables 5 and 7). For example, if the
compression factor is 4, the compression bandwidth
is 5 times faster than the network (Bn/Bcu = 0.2),
and the compare-by-hash algorithm is 3 times faster
(Bn/Bh = 0.33), then using Equation 2, the hit rate
must be at least:

(0.33)/(0.2 + 0.25) = 0.73

for compare-by-hash to be faster. In the graph,
values to the right of line indicating Hr = 1 are
unattainable and compare-by-hash is always slower
in this case.

Let’s set the hit rate to some interesting values and
look at the boundaries where the advantage switches

Hr = 1

 0
 0.2

 0.4
 0.6

 0.8
 1

Bn/Bh
 0 0.2 0.4 0.6 0.8 1

Bn/Bcu

 0

 1

 2

 3

 4

Min. hit rate needed
(max possible 1)

Figure 1: Minimum hit rate for compare-by-hash plus
compression to be faster than compression alone, as a
function of the ratio between algorithm bandwidths and
network bandwidth, with Cf = 4.
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Figure 2: Crossover points for sample hit rates for
compare-by-hash plus compression vs. whole file com-
pression.

from compare-by-hash to pure compression. Rear-
ranging Equation 2, we can plug in different hit rates
and find out at what relative bandwidths compare-
and-hash is faster than diff-and-compress:

Bn

BhHr
− 1

4
≤ Bn

Bcu

Figure 2 shows the lines for Hr equal to 1, 2
3 , and 1

3 .
Below and to the right of each line, pure compression
is a win at any hit rate below that for the relative
bandwidths of the compression function, hash func-
tion, and network.

Let’s look at a real-life example of compare-by-hash
versus whole file compression. To isolate the ef-
fect of compare-by-hash on LBFS performance, the
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designers benchmarked a version of LBFS without
compare-by-hash, but with file leases and compres-
sion. On a network with an upload bandwidth
of 384 Kbps, LBFS was 5–6% faster on the two
benchmarks, and more than 5 times as fast as its
compression-only cousin on one benchmark (which
involved writing many separate copies of the same
file). When network bandwidth was raised to 10
Mbps, LBFS and its compression-only cousin were
actually slower than traditional file systems which
send the entire file data[14].

Because compression can be done once in advance,
it can be amortized over many downloads (as is
common in many software distribution server work-
loads). Let us ignore the cost of compressing the
file and consider compare-by-hash plus compression
compared to downloading and uncompressing the
whole file, which is Equation 2 with Bcu replaced
by Bu:

(
Bn

Bh
)/(

Bn

Bu
+

1
Cf

) ≤ Hr

Plugging in Bn = 0.100 MB/s, Bh = 5 MB/s, Bu =
82 MB/s, and Cf = 4, we get:

(
0.1
5

)/(
0.1
82

+
1
4
) = 0.08

Even with compression time factored out, we need
only a 8% hit rate for compare-by-hash to be faster
than sending and uncompressing the entire com-
pressed file under these conditions. With common
ratios of wide area network bandwidth to compare-
by-hash bandwidth, compare-by-hash is almost al-
ways faster than sending the entire compressed file.

4.6 Compare-by-hash plus compression
vs. diff-and-compress

Next we will add state to the equation and compare
compare-by-hash and compression versus differenc-
ing and compression. This requires that each end
has stored an earlier version of the file that it can
use to generate and apply the differences.

The time for compare-by-hash plus compression,
Tc+h, is as in Equation 1. The time for diff-and-
compress, Tc+d, is the time to create a patch, com-
press and uncompress it, and send the compressed
patch:

Tc+d =
NbSb

Bd
+

NbSb

Bcu
Mr +

NbSb

BnCf
Mr (3)

Using Equations 1 and 3, compare-by-hash plus
compression versus diff-and-compress is a win when:

NbSb

Bh
+

NbSb

Bcu
Mr +

NbSb

BnCf
Mr ≤

NbSb

Bd
+

NbSb

Bcu
Mr +

NbSb

BnCf
Mr

Canceling common terms and multiplying by
BdBh/NbSb:

Bd ≤ Bh

With conventional differencing bandwidths of 8.65–
29.2 MB/s and compare-by-hash bandwidths of
4.51–9.20 MB/s (from Table 3), diff-and-compress
clearly beats compare-by-hash.

What this equation tells us is that compare-by-hash
is only a win when the bandwidth of the differencing
algorithm is lower than the bandwidth of the hash
algorithm. In other words, compare-by-hash is only
a win if we can calculate differences between two files
remotely faster than we can locally — which seems
unlikely.

Another way to look at this is to compare the xdelta
and rsync algorithms for finding identical blocks.
Both compute a fast but weak “rolling checksum” at
every byte boundary in the file, and then compare
these weak checksums (the algorithm for xdelta was
inspired by rsync.). At places where the weak check-
sum matches, rsync computes a truncated MD4
hash, but xdelta merely has to compare the two
blocks of data sitting in memory. rsync must keep
computing checksums until there is only an infinites-
imal chance of collision, but xdelta only has to
compute until it reduces the number of full block
compares it has to do to a reasonable level. As
another example, the VMWare ESX Server imple-
ments content-based page sharing as a memory us-
age optimization[27]. It uses a fast (not crypto-
graphically strong) 64-bit checksum to generate ad-
dresses for shared pages. On the largest possible
memory configuration of 64 GB, the collision rate is
approximately 0.01%. If a hash collision does occur,
the colliding pages are simply declared ineligible for
sharing. Using a cryptographically strong hash to
reduce the collision rate would reduce performance
in return for less than a 0.01% savings in memory.
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Program Bytes sent Normalized
diff -e + bzip2 7594 1.00x
diff -e + gzip 7934 1.04x
xdelta 9543 1.26x
rsync -z 122956 16.20x

Table 8: Bytes transferred while updating Debian pack-
ages and sources metadata files from December 11–12,
2003.

Command Time Data sent
rsync -rz 16 s 7.0 MB
rsync -rz (no timestamps) 41 s 7.0 MB
diff -ruN 37 s 6.3 MB
xdelta (concat. file) 8 s 3.6 MB

Table 9: Total update times from Linux 2.4.21 to Linux
2.4.22.

4.7 Real-world examples where
compare-by-hash is slower

Let’s look at a real-world example where compare-
by-hash is not the optimal solution. The Debian
package update system requires downloading a lo-
cal copy of the package metadata to the client ma-
chine. This is currently done by downloading the en-
tire gzipped file if any of the package metadata has
changed since the last download of the file. Robert
Tiberius Johnson measured the bandwidth neces-
sary to update the package metadata file using diff
and bzip2, diff and gzip, xdelta, and rsync. He
found that diff and bzip2 used the least bandwidth
with gzip and xdelta close behind, but rsync used
12 times the bandwidth of the best solution[11]. Pe-
ter Samuelson reran this comparison on both the
packages and sources metadata files with diff -e,
which generates the minimal output necessary to ap-
ply a patch, on the December 12, 2003 updates to
the packages and sources files; the results are in Ta-
ble 8. In addition to transferring more than 16 times
the minimum necessary data, rsync puts far more
CPU load on the server than serving pre-generated
patches. For this application, rsync is not the right
choice.

As another real world example, we updated our
Linux 2.4.21 source tree to Linux 2.4.22 using diff,
gzip, and patch and compared that to using rsync
and rsyncd. We did the update over the loopback
interface, since network bandwidth is irrelevant for
this comparison. The results are summarized in Ta-
ble 9. The total time for updating using diff -ruN,
gzip, and patch was 37 seconds. If we assume that

the patch is generated in advance and downloaded
many times, and count only the time to download,
uncompress, and apply the patch, it takes 14 seconds
to update. The total time for rsync -rz to update
the same two source trees is 41 seconds when times-
tamps on identical files do not match, and 16 seconds
when timestamps do match.

With any reasonable differencing algorithm, diff-
and-compress will always be faster than compare-by-
hash, even without accounting for the amortization
of the costs of generating differences and compress-
ing over multiple transfers of the data.

4.8 When is compare-by-hash faster?

Both compare-by-hash and diff-and-compress can
only provide performance improvement when the
network bandwidth is lower than the bandwidth of
the hashing or diff-and-compress algorithm.

Compare-by-hash vs. whole file. Without any
compression at all, compare-by-hash is faster than
sending the whole file when the ratio of network
bandwidth to hash algorithm bandwidth is lower
than the percentage of unchanged data. At low net-
work bandwidths, compare-by-hash will almost al-
ways be a win for this case, but when moving data
around on relatively high-speed networks (such as a
local area network or a SCSI bus), compare-by-hash
is much less competitive.

Compare-by-hash plus compression vs. whole
file compression. When compression can be
used, compare-by-hash plus compression of differ-
ences beats transferring the entire compressed file at
nearly any hit rate higher than the ratio of the net-
work bandwidth to the hash algorithm bandwidth.
For a network bandwidth of 100 KB/s, a hash band-
width of 5 MB/s, a compression bandwidth of 10
MB/s, and a compression factor of 5, we only need
a hit rate of about 10% for compare-by-hash to al-
ways be faster than sending the whole compressed
file.

Compare-by-hash plus compression vs. diff-
and-compress. If we can generate the differences
between versions locally and send the compressed
patch, compare-by-hash plus compression is always
slower. This is because we can always generate dif-
ferences between two local versions of the data faster
than we can do it between a local version and a re-
mote version.

Compare-by-hash without compression is sometimes
faster than sending the whole file, compare-by-hash
plus compression is usually faster than sending the
entire compressed file, and compare-by-hash plus
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compression is never faster than diff-and-compress.

5 Alternatives to compare-by-hash

More universal difference and compression algo-
rithms are an interesting research topic, now that
CPU time is seldom a limiting factor in today’s sys-
tems. Compare-by-hash has shown how much CPU
time we are willing to spend on some applications;
for less CPU time we can make substantial improve-
ments in differencing and compressing data more ef-
ficiently. Josh MacDonald’s xdelta delta generat-
ing program and the Xdelta File System[13] deserve
more attention. A network file system similar to
LBFS[14] but using xdelta to generate differences
against a locally cached copy of the version of the
file on the server would have excellent performance
over low-bandwidth networks. This is not entirely
trivial to implement: it would require file leases, a
feature of NFSv4[17] and LBFS, and efficient de-
tection of similarities between different files as well
as the same file. Also interesting are more specific
difference and compression algorithms optimized for
particular data formats, such as line-wrapped ASCII
text, common package formats, and ELF binaries.

Better version control management specialized for
specific data types is extremely interesting. For ex-
ample, BitKeeper[4] is difficult to beat when it comes
to distributed source control management for soft-
ware, but it does not excel at similar functions like
package distribution or efficiently storing version his-
tory of documentation.

One commonly suggested substitute for compare-
by-hash is the concatenation of outputs from multi-
ple hash functions: two different cryptographic hash
functions, the same hash function with two sets of
different initial constants, or the same hash func-
tion run both forwards and backwards on the data.
The end result is still compare-by-hash, just with a
slightly different hash function, and all the same ar-
guments for or against it still apply. As long as the
number of bits in the input is smaller than the num-
ber of bits in the output, hash collisions are more
than possible, they are guaranteed.

6 Conclusions

Compare-by-hash is a useful technique when hash
collisions are not fatal, different users don’t share the
address space, and compare-by-hash provides some
benefit because CPU time is cheap, bandwidth is
scarce, or statelessness is important. If compare-
by-hash is used as a performance optimization, a

convincing argument must be made for why conven-
tional differencing techniques do not offer better per-
formance or are not an option.

For many existing uses of compare-by-hash, includ-
ing software updates over the Internet and low-
bandwidth network file systems, diff-and-compress
provides shorter total transfer time and lower server
load. For example, a Debian package server using
rsync to update the package metadata file would
transfer an order of magnitude more data than if
it used diff and gzip and would use more CPU
time on both the client and server[11] (see Table 8).
Interesting applications of compare-by-hash in the
area of operating systems appear to be scarce, but
are more common in applications.
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