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Abstract

Compare-by-hash is the now-common practice used
by systems designers who assume that when the di-
gest of a cryptographic hash function is equal on two
distinct files, then those files are identical. This ap-
proach has been used in both real projects and in re-
search efforts (for example rysnc [16] and LBFS [12]).
A recent paper by Henson criticized this practice [8].
The present paper revisits the topic from an advo-
cate’s standpoint: we claim that compare-by-hash
is completely reasonable, and we offer various argu-
ments in support of this viewpoint in addition to ad-
dressing concerns raised by Henson.
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1 Introduction

There is a well-known short-cut technique for test-
ing two files for equality. The technique entails us-
ing a cryptographic hash function, such as SHA1 or
RIPEMD-160, to compare the files: instead of com-
paring them byte-by-byte, we instead compare their
hashes. If the hashes differ, then the files are certainly
different; if the hashes agree, then the files are al-
most certainly the same. The motivation here is that
the two files in question might live on opposite ends
of a low-bandwidth network connection and there-
fore a substantial performance gain can be realized
by sending a small (eg, 20 byte) hash digest rather
than a large (eg, 20 megabyte) file. Even without this
slow network connection, it is still a significant perfor-
mance gain to compare hashes rather than compare
files directly when the files live on the same disk: if
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we always keep the latest hash value for files of in-
terest, we can quickly check the files for equality by
once again comparing only a few bytes rather than
reading through them byte-by-byte.

One well-known use of this technique is the file syn-
chronizing tool called rsync [16]. This tool allows one
to maintain two identical copies of a set of files on
two separate machines. When updates are applied to
some subset of the files on one machine, rsync copies
those updates to the other machine. In order to de-
termine which files have changed and which have not,
rsync compares the hashes of respective files and if
they match, assumes they have not changed since the
last synchronization was performed.1

Another well-known use of compare-by-hash in
the research community is the Low-Bandwidth File
System (LBFS) [12]. The LBFS provides a fully-
sychronized file system over low-bandwidth connec-
tions, once again using a cryptographic hash func-
tion (this time SHA1) to aid in determining when
and where updates have to be distributed.

Cryptographic hash functions are found through-
out cryptographic protocols as well: virtually every
digital signature scheme requires that the message to
be signed is first processed by a hash function, for ex-
ample. Time-stamping mechanisms, some message-
authentication protocols, and several widely-used
public-key cryptosystems also use cryptographic hash
functions.

A difference between the above scenarios is that
usually in the compare-by-hash case (rsync and
LBFS are our examples here) there is no adver-

sary. Or at least the goal of the designers was not
to provide security via the use of cryptographic hash
functions. So in some sense using a cryptographic
hash function is overkill: a hash function that is

1This is an oversimplification; rsync actually uses a
lightweight “rolling” hash function in concert with a crypto-
graphic hash function, MD4, on blocks of the files being com-
pared. The simplified description will suffice for our purposes.
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simply “good” at spreading distinct inputs randomly
over some range should suffice. In the cryptographic
examples, there is an adversary: indeed all the latter
examples are taken from the cryptographic literature
and the hash functions in these scenarios are specifi-
cally introduced in order to foil a would-be attacker.

In spite of the fact these functions are stronger than
what is needed, a recent paper by Henson [8] criti-
cizes the approach and gives a list of concerns. In
this paper we will revisit some of the issues raised by
Henson and argue that in most cases they are not of
great concern. We will argue in favor of continuing to
use compare-by-hash as a cheap and practical tool.

2 The Basics of Hash Functions

They are variously called “cryptographic hash func-
tions,” “collision-resistant hash functions,” and “Uni-
versally One-Way Hash Functions,” not to mention
the various acronyms in common usage. Here we will
just say “hash function” and assume we mean the
cryptographic sort.

A hash function h accepts any string from {0, 1}∗
and outputs some b-bit string called the “hash” or
“digest.” The most well-known hash functions are
MD4, MD5 [14], RIPEMD-160 [6], and SHA1 [7].
The first two functions output digests of 128 bits,
and the latter two output 160 bits.

Although it is not possible to rigorously define the
security of these hash functions, we use the following
(informal) definitions to capture the main goals.2 A
hash function h should be

• Collision-Resistant: it should be “computa-
tionally intractible” to find distinct inputs a and
b such that h(a) = h(b). Of course such a and
b must exist given the infinite domain and finite
range of h, but finding such a pair should be very
hard.

• Inversion-Resistant: given any digest v, it
should be “computationally intractible” to find
an input a such that h(a) = v. This means that
hashing a document should provide a “finger-
print” of that document without revealing any-
thing about it.

• Second-Preimage-Resistant: given an input
a and its digest v = h(a), it should be “com-
putationally intractible” to find a second input

2For a proper discussion of these notions, along with a dis-
cussion of how they relate to one another, see [15].

b 6= a with h(b) = v. This is the condition nec-
essary for secure digital signatures, which is the
context in which hashing is most commonly em-
ployed cryptographically.

In the context of compare-by-hash, collision-
resistance is our main concern: if ever two distinct
inputs produced the same digest, we would wrongly
conclude that distinct objects were the same and this
would result in an error whose severity is determined
by the application; typically a file would be out-of-
sync or a file system would become inconsistent.

Finding Collisions. If avoiding a collision (the
event that two distinct inputs hash to the same out-
put) is our main goal, we must determine how hard
it is to find one. For a random function, this is
given by the well-known “birthday bound.” Roughly
stated, if we are given a list of b-bit independent ran-
dom strings, we expect to start seeing collisions after
about 2b/2 strings have appeared. This means that
MD4 and MD5 should begin showing collisions after
we have seen about 264 hash values, and RIPEMD-
160 and SHA1 should begin showing collisions after
about 280 hash evaluations.

This is the expected number of hash evaluations
before any pair of files collide. The probability that
a given pair of files collide is much lower: 2−160 for
SHA1, for example.

3 Compare-by-Hash: A Flawed

Technique?

In her paper, Henson raises a number of issues which
she deems important shortcomings of the compare-
by-hash technique [8]. A central theme in Henson’s
paper is her opposition to the notion that digests can
be treated as unique ids for blocks of data. She gives a
list of arguments, often supported by numerical cal-
culations, as to why this is a dangerous notion. In
order to take an opposing viewpoint, we now visit
several of her most prominent claims and examine
them.

Incorrect Assumptions. One of Henson’s most
damning claims is her repeated assertion (cf. Sections
3 and 4.1) that in order for the outputs of a crypto-
graphic hash function to be uniform and random, the
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inputs to the function must be random.3 In fact, in
Section 4.1, she claims that this supposedly-wrong
assumption on the inputs is “the key insight into the
weakness of compare-by-hash.” She correctly points
out that most file-system data are in fact not uniform
over any domain. However, her assertion about hash
functions is incorrect.

Cryptographic hash functions are designed to
model “random functions.” A random function from
the set of all strings to the set of b-bit values can be
thought of as an infinitely-long table where every pos-
sible string is listed in the left column, and for each
row a random and independent b-bit number is listed
in the right column. Obviously with this (fantasy)
mapping, even highly-correlated distinct inputs will
map to independent and random outputs. Of course
any actual hash function we write down cannot have
this property (since it is a static object the moment
we write it down), most researchers agree that our
best hash functions, like SHA1 and RIPEMD-160,
do a very good job at mapping correlated inputs to
uncorrelated outputs. (This is what’s known as with-
standing “differential cryptanalysis.”)

If the assumption that inputs must be random is
indeed the key insight into the weakness of compare-
by-hash, as Henson claims, then we argue that per-
haps compare-by-hash is not so weak after all.

Established Uses of Hashing. In section 3, Hen-
son states that “compare-by-hash” sets a new prece-
dent by relying solely on hash-value comparison in
place of a direct comparison. While new precedents
are not necessarily a bad thing, in this case it is sim-
ply untrue: one of the oldest uses of cryptographic
hashing is (unsurprisingly) in cryptography. More
specifically, they are universally used in digitial signa-
ture schemes where a document being digitally signed
is first hashed with a cryptographic hash function,
and then the signature is applied to the hash value.
This is expressly done for performance reasons: ap-
plying a computationally-expensive digital signature
to a large file would be prohibitive, but applying it to
a short hash-function output is quite practical. The
unscrupulous attacker now need only find a different
(evil) file with the same hash value and this signature
will appear valid for it as well. Therefore the secu-
rity of the scheme rests squarely on the strength of
the hash function used (in addition to the strength of

3Technically, this statement cannot make sense since the
input set is infinite and not compact and therefore cannot even
have a probability measure.

the signature scheme itself), and the comparison of
files is never performed: it is done entirely through
the hash function. In fact, this could fairly be called
“compare-by-hash” as well, and it has been accepted
by the security community for decades.

Questionable Examples. Henson notes that if
a massive collision-finding attempt for SHA1 were
mounted by employing a large distributed brute-
force attack using a compare-by-hash-based file sys-
tem that also uses SHA1, collisions would not be de-
tected. First, the example is a bit contrived: using
a file-system based on SHA1 to look for collisions in
SHA1 is a bit like testing NFS by mirroring it with
the exact same implementation of NFS and then com-
paring to see if the results match. But even given
this, it’s still not clear that searching for SHA1 col-
lisions using a SHA1-based compare-by-hash file sys-
tem would present any problems. Van Oorschot and
Wiener have described the best-known ways of do-
ing parallel collision searching in this domain [17].
Let’s use SHA1 in an example: each computer se-
lects a (distinct, random) starting point x0, and then
iterates the hash function xi = SHA1(xi−1), looking
for “landmark” values that are stored in the file sys-
tem. (These landmark values might be hash values
with 40 leading zeros, for example. Under the as-
sumption the hash outputs are uniform and random,
we would expect to see such a point every 240 itera-
tions. We do this in order to avoid storing all hash
values which for SHA1 would approximately require
an expected 285 bytes of storage, not including over-
head for data structures for collision detection!) Since
these landmark values would be written to the file
system (along with other bookkeeping information all
stored in some data structure), and since the number
of blocks would be far less than 280, it’s highly un-
likely that even a SHA1-based compare-by-hash file
system would have any difficulties at all.

The second example Henson gives is the VAL-1
hash function. The VAL-1 hash creates a publicly-
known collision on two points, zero and one, and oth-
erwise behaves like SHA1. Henson claims the VAL-1
hash has “almost identical probability of collision” as
SHA1 and yet allows a user to make changes that
would go undetected in a compare-by-hash-based file
system. (The term “collision probability” is not de-
fined anywhere in her paper.) Of course it is correct
that the probability of collision is nearly the same
between VAL-1 and SHA1 when the inputs are ran-
dom (which itself is difficult to define as we mentioned
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above). But more to the point, VAL-1 does not have
security equivalent to SHA1 by any normal notion
of hash-function security in common use. The in-
formal notion of collision-resistance given above dic-
tates that it is intractible to find collisions in our
hash function; in VAL-1 it is quite trivial since VAL-
1(0) = VAL-1(1). (In the formal definitions for hash-
function security, VAL-1 would fail to be secure as
well.) Once again, the example is dubious due to the
assumption that hash-function security rests solely
on the distribution of digests over randomly-chosen
inputs.

What is the Attack Model? Although Henson
mentions correctness as the principal concern, she
also mentions security. But throughout the paper
it’s unclear what the attack model is, exactly. More
specifically, if we are worried about collisions, do we
assume that our enemy is just bad luck, or is there
an intelligent attacker trying to cause collisions?

If we’re just concerned with bad luck, we have
seen there is very little to worry about: the chance
that two files will have the same hash (assuming
once again that the hash function adequately ap-
proximates a random function) is about 2−160 for a
160-bit hash function like SHA1 or RIPEMD-160. If
there is an active attacker trying to cause trouble, he
must first somehow find a collision. This is a diffi-
cult proposition, but in the extremely unlikely case
he succeeds, he may find blocks b1 and b2 that collide.
In this case, he may freely cause problems by substi-
tuting b1 for b2 or vice-versa, and a compare-by-hash
file system will not notice. However, finding this one
collision (which we must emphasize has still not been
done to-date) would not enable him to alter arbitrary
blocks. If the method by which he found b1 and b2

was to try random blocks until he found a collision,
it’s highly unlikely that b1 or b2 are blocks of interest
to him, that they have any real meaning, or that they
even exist on the file system in question.

In either case, it would seem that compare-by-hash
holds up well in both attack models.

The Insecurity of Cryptographic Objects.

Henson spends a lot of time talking about the poor
track-record of cryptographic algorithms (cf. Section
4.2), stating that the literature is “rife with examples
of cryptosystems that turned out not to be nearly
as secure as we thought.” She further asserts that
“history tells us that we should expect any popular
cryptographic hash to be broken within a few years

of its introduction.” Although it is true that some
algorithms are broken, this is by no means as routine
as she implies.

The Davies-Meyers hash has been known since
1979, and the Matyas-Meyer-Oseas scheme since
1985 [11]. These have never been broken despite
their being very well-known and well-analyzed [13, 2].
RIPEMD-160 and SHA1 were both published more
recently (1995) but have still held up for more than
just “a few years,” since there is still no known prac-
tical attack against either algorithm. While it is
true that there have been many published crypto-
graphic ideas which were later broken, rarely have
these schemes ever made it into FIPS, ANSI, or ISO
standards. The vetting process usually weeds them
out first. Probably the best example is the DES
blockcipher which endured 25 years of analysis with-
out any effective attacks being found.

Even when these “breaks” occur, they are often
only of theoretical interest: they break because they
fail to meet some very strict definition of security set
forth by the cryptographic community, not because
the attack could be used in any practical way by a
malicious party.

Ask any security expert and he or she will tell you
the same thing: if you want to subvert the security
of a computer system, breaking the cryptography is
almost never the expeditious route. It’s highly more
likely that there is some flaw in the system itself that
is easier to discover and exploit than trying to find
collisions in SHA1.

That said, there have been attacks on crypto-
graphic hash functions over the past 10 years, and
some very striking ones just in just the past few years.
We briefly discuss these.

Recent Attacks on Cryptographic Hash

Functions. Collisions in MD4 were found by Hans
Dobbertin in 1996 [5]. However, MD4 is still used
in rsync undoubtedly due to the arguments made
above: there is typically no adversary, and just hap-

pening on a collision in MD4 is highly unlikely. MD4
was known to have shortcomings long before Dob-
bertin’s attack, so its inventor (Ron Rivest) also pro-
duced the stronger hash function MD5. MD5 was
also attacked by Dobbertin, with partial success, in
1996 [4]. However, full collisions in MD5 were not
found until 2004 when Xiaoyun Wang shocked the
community by announcing that she could find coll-
sions in MD5 in a few hours on an IBM P690 [19].
Since that time, other researchers have refined her
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attack to produce collisions in MD5 in just a few
minutes on a Pentium 4, on average [9, 1]. Clever
application of this result has allowed various attacks:
distinct X.509 certificates with the same MD5 di-
gest [10], distinct postscript files with the same MD5
digest [3], and distinct Linux binaries with the same
MD5 digest [1].

No inversion or second-preimage attacks have yet
been found, but nonetheless cryptographers now con-
sider MD5 to be compromised. SHA1 and RIPEMD-
160 still have no published collisions, but many be-
lieve it is only a matter of time. Wang’s latest attacks
claim an attack complexity of around 263, well within
the scope of a parallelized attack [18]. However, until
the attack is implemented, we won’t know for sure if
her analysis is accurate.

Given all of this, we can now revisit the central
question of this paper one final time: “is it safe to use
cryptographic hash functions for compare-by-hash?”
I argue that it is: even with MD4 (collisions can be
found by hand in MD4!). This is, once again, be-
cause in the typical compare-by-hash setting there is
no adversary. The event that two arbitrary distinct
files will have the same MD4 hash is highly unlikely.
And in the rysnc setting, comparisons are done be-
tween files only if they have the same filename; we
don’t compare all possible pairs of files across the
filesystems. No birthday phenomenon exists here.

In the cryptographic arena, the issue is more com-
plicated: there is an adversary and what can be done
with the current attack technology is a topic currently
generating much discussion. Where this ends up re-
mains to be seen.

4 Conclusion

We conclude that it is certainly fine to use a 160-
bit hash function like SHA1 or RIPEMD-160 with
compare-by-hash. The chances of an accidental col-
lision is about 2−160. This is unimaginably small.
You are roughly 290 times more likely to win a U.S.
state lottery and be struck by lightning simultane-
ously than you are to encounter this type of error in
your file system.

In the adversarial model, the probability is higher
but consider the following: it was estimated that gen-
eral techniques and custom hardware could find col-
lisions in a 128-bit hash function for 10,000,000 USD
in an expected 24 days [17]. Given that this esti-
mate was made in 1994 we could use Moore’s law to

extrapolate the cost in 2006 to be more like 80,000
USD. Since SHA1 has 32 more bits, we could rescale
these estimates to be 80,000,000 USD and 2 years to
find a collision in SHA1. This cost is far out of reach
for anyone other than large corporations and govern-
ments. But if we are worried about adversarial users
with lots of resources, it might make sense to use the
new SHA-256 instead.

Of course, if someone is willing to spend 80,000,000
USD to break into your computer system, it would
probably be better spent finding vulnerabilities in the
operating system or on social engineering. And this
approach would likely yield results in a lot less than
2 years.
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A A Mathematical Note

This appendix is related to the paper, but not essen-
tial to the arguments made.

A further issue with Henson’s paper should be
pointed out for purposes of clarity. Many of Hen-
son’s claims are supported by calculation. However
these calculations are sometimes not quite right: in
section 3, she claims that the probability of one or
more collisions among n outputs from a b-bit cryp-
tographic hash function is 1 − (1 − 2−b)n. (Here we
model the b-bit outputs as independent uniform ran-
dom strings.) This is incorrect. In fact it greatly un-

derestimates the collision probability. While it is true
the probability that two b-bit random strings will not
collide is (1− 2−b), we cannot raise this to the n and
expect this to be the number of non-collisions among
n total outputs since it neglects to count collisions
across already-selected pairs.

The probability that n outputs of b-bits will con-
tain a collision is C(2b, n) = 1 − (2b − 1)/2b × (2b −
2)/2b × · · · × (2b − n + 1)/2b. It can be shown that,
when 1 ≤ n ≤ 2(b+1)/2 we have 0.316n(n − 1)/2b ≤
C(2b, n) ≤ 0.5n(n − 1)/2b. This formula shows that
the probability of a collision is very unlikely when n
is well below the square root of 2b, and then grows
dramatically as n approaches this number. Indeed, it
can be shown that the expected number of outputs
needed before a collision occurs is n ≈

√
2b−1π.
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