
HOT Compilation: Σ Kinds

TA: Akiva Leffert ∗

December 9, 2006

1 Introduction

In examining the singleton calculus in class, we found that we needed a function kind that was dependent
in the sense that the codomain kind could depend upon the value the function was applied to, denoted
Πα:k1. k2. Recall that we saw this as a generalization of ordinary function kinds, writing k1 → k2 for the
degenerate non-dependent case where α does not appear free in k2.

There is a similar generalization of pair kinds k1 × k2, where the kind of the second component can
depend on the first component. We write this dependent pair kind Σα:k1. k2. As before, we continue to
write degenerate pair kinds as k1 × k2, when α does not appear free in k2.

(Somewhat confusingly, dependent pair kinds (Σ kinds) are often referred to as dependent sums, while
dependent function kinds (Π kinds) are called dependent products. For this handout, we’ll either call them
dependent pairs and dependent functions or refer to them directly as Σ kinds and Π kinds.)

Dependent pairs are useful for understanding the type theoretic underpinnings of modular structure in
languages like Standard ML. Standard ML’s module language lets us create “translucent” signatures that
expose or conceal varying degrees of information about the identities of types. For example, consider the
signature:

sig
type t
type u = t -> t

end

In this signature, type t’s identity is completely hidden, while a certain amount of information is allowed to
leak out about the identity of type u—namely that it is equivalent to t -> t, whatever t happens to be.

Dependent pair kinds along with singletons allow us to express similar dependency relationships among
collections of constructors. The signature shown above might be represented by a pair kind like

Σα:T.S(α → α),

which denotes the kind of a pair of constructors, the first having kind T and the second being definitionally
equal to the function type from elements of the first type to elements of the first type.

In fact, in our elaborator IL, we will be representing modules and signatures using a generalization of
dependent pairs to the n-ary case (while also exercising caution to distinguish labels like t from variables
like α). It may be helpful, though, to keep the basic type theory of dependent pairs in mind as we explore
the topic of elaboration. Σ kinds will arise more directly when we reach the topic of phase separation.

2 Technical details

The system we will consider in this handout is the dependently typed λ-calculus with functions, pairs,
and singletons, called λΠΣS

≤ . We’ll examine the main judgment forms of λΠΣS
≤ and exhibit algorithms for

∗Originally preparedy by William Lovas

1



k ::= T kind of base types
| S(c) singleton kind
| Πα:k1. k2 kind of constructor functions
| Σα:k1. k2 kind of constructor pairs

c ::= α constructor variables
| c1 → c2 function types
| ∀α:k. c polymorphic types
| λα:k. c constructor functions
| c1 c2 constructor application
| 〈c1, c2〉 constructor pairs
| π1 c first projection
| π2 c second projection

Γ ::= · empty context
| Γ, α:k kinding declaration

Figure 1: Syntax of λΠΣS
≤

p ::= α variables
| p c application of a path
| π1 p first projection from a path
| π2 p second projection from a path

Figure 2: Syntax of constructor paths in λΠΣS
≤

2



deciding those judgments, building off the rules already presented in class. While a detailed examination of
the metatheory of λΠΣS

≤ , is beyond our scope, the interested reader may find further discussion in [1].
The syntax of λΠΣS

≤ is presented is Figures 1 and 2. Note that we’ve elided any discussion of expressions
and expression typing; the only changes required to add dependent pair kinds to the language occur at the
constructor and kind levels.

2.1 Declarative rules

The declarative judgments defining the static semantics of λΠΣS
≤ are shown in Figures 3 and 4. Most of the

rules you’ve already seen in class; the new rules required for Σ kinds are displayed in shaded boxes. A few
interesting rules have been named.

Both constructor kinding and constructor equivalence must respect subkinding, so both judgments have
subsumption rules, K-Sub and Eq-Sub respectively. Both judgments also include extensionality principles
at Π and Σ kinds; you may remember from class that extensionality is related to η-conversion: it permits us
to reason about a constructor based on how it behaves.

Constructor equivalence also includes the usual β-conversion rules for both functions and pairs. In-
terestingly, these rules are in some sense “redundant”: given extensional equivalence (rules Eq-Π-Ext and
Eq-Σ-Ext) and equivalence at singleton kinds (rule Eq-Sing), the β rules are admissible! Further discussion
of this point, along with examples and proofs, can be found in [1].

Recall that subkinding for Π kinds is contravariant in the domain and covariant in the codomain; sub-
kinding for Σ kinds is covariant in both positions.

3



Γ ` k : kind

Γ ` T : kind
Γ ` c : T

Γ ` S(c) : kind
Γ ` k1 : kind Γ, α:k1 ` k2 : kind (α 6∈ dom(Γ))

Γ ` Πα:k1. k2 : kind

Γ ` k1 : kind Γ, α:k1 ` k2 : kind (α 6∈ dom(Γ))
Γ ` Σα:k1. k2 : kind

Γ ` c : k

Γ(α) = k

Γ ` α : k

Γ ` c1 : T Γ ` c2 : T
Γ ` c1 → c2 : T

Γ ` k : kind Γ, α:k ` c : T (α 6∈ dom(Γ))
Γ ` ∀α:k. c : T

Γ ` k : kind Γ, α:k ` c : k′ (α 6∈ dom(Γ))
Γ ` λα:k. c : Πα:k. k′

Γ ` c1 : Πα:k. k′ Γ ` c2 : k

Γ ` c1 c2 : [c2/α]k′

Γ ` c1 : k1 Γ ` c2 : [c1/α]k2 Γ ` Σα:k1. k2 : kind
Γ ` 〈c1, c2〉 : Σα:k1. k2

Γ ` c : Σα:k1. k2

Γ ` π1 c : k1

Γ ` c : Σα:k1. k2

Γ ` π2 c : [π1 c/α]k2

Γ ` c ≡ c′ : T
Γ ` c : S(c′)

(K-Sing-Intro)
Γ ` c : k′ Γ ` k′ ≤ k

Γ ` c : k
(K-Sub)

Γ ` k : kind Γ, α:k ` c α : k′ Γ ` c : Πα:k. k′′ (α 6∈ dom(Γ))
Γ ` c : Πα:k. k′

(K-Π-Ext)

Γ ` π1 c : k1 Γ ` π2 c : [π1 c/α]k2 Γ ` Σα:k1. k2 : kind
Γ ` c : Σα:k1. k2

(K-Σ-Ext)

Γ ` k1 ≤ k2

Γ ` T ≤ T
Γ ` c : T

Γ ` S(c) ≤ T
(S-Sing)

Γ ` c1 ≡ c2 : T
Γ ` S(c1) ≤ S(c2)

Γ ` k2 ≤ k1 Γ, α:k2 ` k′1 ≤ k′2 Γ, α:k1 ` k′1 : kind (α 6∈ dom(Γ))
Γ ` Πα:k1. k

′
1 ≤ Πα:k2. k

′
2

(S-Π)

Γ ` k1 ≤ k2 Γ, α:k1 ` k′1 ≤ k′2 Γ, α:k2 ` k′2 : kind (α 6∈ dom(Γ))
Γ ` Σα:k1. k

′
1 ≤ Σα:k2. k

′
2

(S-Σ)

Figure 3: Declarative judgments: kind formation, kinding, and subkinding

4



Γ ` c1 ≡ c2 : k

Γ ` c : k

Γ ` c ≡ c : k

Γ ` c1 ≡ c2 : k

Γ ` c2 ≡ c1 : k

Γ ` c1 ≡ c2 : k Γ ` c2 ≡ c3 : k

Γ ` c1 ≡ c3 : k

Γ(α) = k

Γ ` α ≡ α : k

Γ ` c1 ≡ c2 : T Γ ` c′1 ≡ c′2 : T
Γ ` c1 → c′1 ≡ c2 → c′2 : T

Γ ` k : kind Γ, α:k ` c1 ≡ c2 : T (α 6∈ dom(Γ))
Γ ` ∀α:k. c1 ≡ ∀α:k. c2 : T

Γ ` k : kind Γ, α:k ` c1 ≡ c2 : k′ (α 6∈ dom(Γ))
Γ ` λα:k. c1 ≡ λα:k. c2 : Πα:k. k′

Γ ` c1 ≡ c2 : Πα:k. k′ Γ ` c′1 ≡ c′2 : k

Γ ` c1 c′1 ≡ c2 c′2 : [c′1/α]k′

Γ ` c1 ≡ c′1 : k1 Γ ` c2 ≡ c′2 : [c1/α]k2 Γ ` Σα:k1. k2 : kind
Γ ` 〈c1, c2〉 ≡ 〈c′1, c′2〉 : Σα:k1. k2

Γ ` c ≡ c′ : Σα:k1. k2

Γ ` π1 c ≡ π1 c′ : k1

Γ ` c ≡ c′ : Σα:k1. k2

Γ ` π2 c ≡ π2 c′ : [π1 c/α]k2

Γ ` c : S(c′)
Γ ` c ≡ c′ : S(c′)

(Eq-Sing)
Γ ` c : S(c′)

Γ ` c ≡ c′ : T
(Eq-Sing-Elim)

Γ ` c1 ≡ c2 : k Γ ` k ≤ k′

Γ ` c1 ≡ c2 : k′
(Eq-Sub)

Γ, α:k ` c1 : k′ Γ ` c2 : k

Γ ` (λα:k. c1) c2 ≡ [c2/α]c1 : [c2/α]k′
(Eq-Π-β)

Γ ` c1 : k1 Γ ` c2 : k2

Γ ` π1 〈c1, c2〉 ≡ c1 : k1

(Eq-Σ-β1)
Γ ` c1 : k1 Γ ` c2 : k2

Γ ` π2 〈c1, c2〉 ≡ c2 : k2

(Eq-Σ-β2)

Γ ` k : kind Γ, α:k ` c1 α ≡ c2 α : k′ (α 6∈ dom(Γ))
Γ ` c1 : Πα:k. k′′ Γ ` c2 : Πα:k. k′′′

Γ ` c1 ≡ c2 : Πα:k. k′
(Eq-Π-Ext)

Γ ` π1 c ≡ π1 c′ : k1 Γ ` π2 c ≡ π2 c′ : [π1 c/α]k2 Γ ` Σα:k1. k2 : kind
Γ ` c ≡ c′ : Σα:k1. k2

(Eq-Σ-Ext)

Figure 4: Declarative judgments, continued: constructor equivalence

5



ST(c) def= S(c)

SS(c′)(c)
def= S(c)

SΠα:k1. k2(c)
def= Πα:k1.Sk2(c α) (where α 6∈ FV (c))

SΣα:k1. k2(c)
def= Sk1(π1 c)× S[π1 c/α]k2(π2 c)

Figure 5: Singletons at higher kinds

2.2 Algorithmic rules

λΠΣS
≤ enjoys both decidable kind-checking and decidable constructor equivalence (though the proofs of these

facts are decidedly non-trivial). Algorithmic rules for these judgments and judgments they depend upon
appear in Figures 6, 7, and 8. Additionally, we must extend our definition of higher-order singletons to
account for singletons of constructors with Σ kinds; this is done in Figure 5.

Figure 6 shows the judgments most closely related to constructor kinding: kind formation, kind checking,
kind synthesis, and subkinding. The subsumption rule K-Sub has been replaced with the kind-checking rule
AK-Sub which invokes algorithmic subkinding; kind checking is used anytime a constructor is required to
have a particular kind, as in the premise for the argument in the rule for constructor application.

The rules for algorithmic subkinding are nearly identical to the declarative ones with all declarative
judgments replaced by the corresponding algorithmic ones. The main outlier is the singleton rule, AS-Sing,
which lacks a premise corresponding to S-Sing’s premise checking that the constructor c is well-formed at
kind T. This premise can be omitted in the algorithmic rule because we presuppose that all the inputs
of any algorithmic judgment are well-formed in the appropriate context; since S(c) is well-formed only if c
has kind T, we needn’t check this fact. Similarly, AS-Π and AS-Σ needn’t include premises to ensure the
well-formedness of both kinds in the conclusion like the declarative rules S-Π and S-Σ must.

It is interesting to note that the principal kind of a constructor pair is never a dependent pair kind, but
rather always a degenerate × kind. Similarly, our definition of singletons at Σ kinds yields a degenerate
non-dependent pair kind1. One might be surprised at this, since dependency was absolutely essential in
defining singletons at function kinds—indeed, once we added singletons to the language, we had to add
dependent functions!

Intuitively, the same situation can be sidestepped with regard to pair kinds because we always know both
components of a constructor pair c statically: the first component is π1 c and the second is π2 c. Since we
have the ability to name both components, we can eliminate any dependency in the second component’s kind
simply by substituting π1 c for the Σ-bound variable. No similar trick exists for dependent function kinds
since the argument to the function is fundamentally unknown: until we apply the function, its argument can
be named only by the Π-bound variable.

Weak head normalization and its constituent judgments are defined in Figure 7. We extend natural kind
extraction to Σ kinds in the obvious way, taking care to eliminate dependencies from the kind of a second
projection. Weak head reduction is supplemented with the usual β and congruence rules for constructor
pairs.

The equivalence algorithm in Figure 8 is the same kind-directed algorithm we’ve seen before: the exten-
sionality principles serve to drive comparison down to base kind T, and then constructors are weak head
normalized and compared structurally. Recall that we presuppose the well-formedness of the inputs, so the
rule for comparison at singleton kinds simply succeeds: if both constructors have the same singleton kind,
they must be equivalent.

1If we wanted more uniformity, we could have defined things differently to keep Σs around in principal pair kinds and
singletons at pair kinds, but eliminating the dependency makes our implementation burden a bit lighter.

6



Γ ` k ⇐ kind

Γ ` T ⇐ kind
Γ ` c ⇐ T

Γ ` S(c) ⇐ kind
Γ ` k1 ⇐ kind Γ, α:k1 ` k2 ⇐ kind (α 6∈ dom(Γ))

Γ ` Πα:k1. k2 ⇐ kind

Γ ` k1 ⇐ kind Γ, α:k1 ` k2 ⇐ kind (α 6∈ dom(Γ))
Γ ` Σα:k1. k2 ⇐ kind

Γ ` c ⇐ k

Γ ` c ⇒ k′ Γ ` k′ E k

Γ ` c ⇐ k
(AK-Sub)

Γ ` c ⇒ k

Γ(α) = k

Γ ` α ⇒ Sk(α)
Γ ` c1 ⇐ T Γ ` c2 ⇐ T

Γ ` c1 → c2 ⇒ T
Γ ` k ⇐ kind Γ, α:k ` c ⇐ T (α 6∈ dom(Γ))

Γ ` ∀α:k. c ⇒ T

Γ ` k ⇐ kind Γ, α:k ` c ⇒ k′ (α 6∈ dom(Γ))
Γ ` λα:k. c ⇒ Πα:k. k′

Γ ` c1 ⇒ Πα:k. k′ Γ ` c2 ⇐ k

Γ ` c1 c2 ⇒ [c2/α]k′

Γ ` c1 ⇒ k1 Γ ` c2 ⇒ k2

Γ ` 〈c1, c2〉 ⇒ k1 × k2

Γ ` c ⇒ k1 × k2

Γ ` π1 c ⇒ k1

Γ ` c ⇒ k1 × k2

Γ ` π2 c ⇒ k2

Γ ` k1 E k2

Γ ` T E T Γ ` S(c) E T
(AS-Sing)

Γ ` c1 ⇔ c2 : T
Γ ` S(c1) E S(c2)

Γ ` k2 E k1 Γ, α:k2 ` k′1 E k′2 (α 6∈ dom(Γ))
Γ ` Πα:k1. k

′
1 E Πα:k2. k

′
2

(AS-Π)

Γ ` k1 E k2 Γ, α:k1 ` k′1 E k′2 (α 6∈ dom(Γ))
Γ ` Σα:k1. k

′
1 E Σα:k2. k

′
2

(AS-Σ)

Figure 6: Algorithmic judgments: kind formation, kind checking/principal kind synthesis, and subkind
checking

7



Γ ` p ↑ k

Γ(α) = k

Γ ` α ↑ k

Γ ` p ↑ Πα:k. k′

Γ ` p c ↑ [c/α]k′
Γ ` p ↑ Σα:k1. k2

Γ ` π1 p ↑ k1

Γ ` p ↑ Σα:k1. k2

Γ ` π2 p ↑ [π1 p/α]k2

Γ ` c1 ; c2

Γ ` (λα:k. c1) c2 ; [c2/α]c1

(R-Π-β)
Γ ` c1 ; c′1

Γ ` c1 c2 ; c′1 c2

Γ ` π1 〈c1, c2〉 ; c1

(R-Σ-β1) Γ ` π2 〈c1, c2〉 ; c2

(R-Σ-β2)

Γ ` c ; c′

Γ ` π1 c ; π1 c′
Γ ` c ; c′

Γ ` π2 c ; π2 c′

Γ ` p ↑ S(c)
Γ ` p ; c

Γ ` c1 ⇓ c2

Γ ` c 6;
Γ ` c ⇓ c

Γ ` c ; c′ Γ ` c′ ⇓ c′′

Γ ` c ⇓ c′′

Figure 7: Algorithmic judgments, continued: natural kind extraction, weak head reduction, and weak head
normalization

8



Γ ` c1 ⇔ c2 : k

Γ ` c1 ⇔ c2 : S(c)
Γ ` c1 ⇓ c′1 Γ ` c2 ⇓ c′2 Γ ` c′1 ↔ c′2 : k

Γ ` c1 ⇔ c2 : T

Γ, α:k ` c1 α ⇔ c2 α : k′ (α 6∈ dom(Γ))
Γ ` c1 ⇔ c2 : Πα:k. k′

(AEq-Π-Ext)

Γ ` π1 c ⇔ π1 c′ : k1 Γ ` π2 c ⇔ π2 c′ : [π1 c/α]k2

Γ ` c ⇔ c′ : Σα:k1. k2

(AEq-Σ-Ext)

Γ ` c1 ↔ c2 : k

Γ(α) = k

Γ ` α ↔ α : k

Γ ` c1 ⇔ c2 : T Γ ` c′1 ⇔ c′2 : T
Γ ` (c1 → c′1) ↔ (c2 → c′2) : T

Γ, α:k ` c1 ⇔ c2 : T (α 6∈ dom(Γ))
Γ ` ∀α:k. c1 ↔ ∀α:k. c2 : T

Γ ` c1 ↔ c2 : Πα:k. k′ Γ ` c′1 ⇔ c′2 : k

Γ ` c1 c′1 ↔ c2 c′2 : [c′1/α]k′
Γ ` c ↔ c′ : Σα:k1. k2

Γ ` π1 c ↔ π1 c′ : k1

Γ ` c ↔ c′ : Σα:k1. k2

Γ ` π2 c ↔ π2 c′ : [π1 c/α]k2

Figure 8: Algorithmic judgments, continued: kind-directed equivalence and structural equivalence

References

[1] Christopher A. Stone and Robert Harper. Extensional equivalence and singleton types. ACM Transac-
tions on Computational Logic, to appear. Available electronically at http://www.cs.hmc.edu/∼stone/
papers/tocl-final.pdf.

9


