
HOT-Compilation: Phase Splitting

∗TA: Akiva Leffert
aleffert@andrew.cmu.edu

Out: Monday, November 13, 2006
Due: Tuesday, November 28, 2006 (Before midnight)

1 Introduction

Many statically typechecked languages like ML enjoy a property referred to as the “phase distinction”, which
says roughly that the interpretation of a program can be divided into two distinct phases: the static, “compile
time” phase, and the dynamic, “run time” phase. The computation of the type of a program cannot depend
upon evaluation of the program — one may typecheck a program without executing it.

The phase distinction may seem surprising at first, since ML entangles expressions and types by grouping
them together in modules and signatures. A process called phase splitting unravels this coupling, splitting
each module and signature into its static components and its dynamic components.

In this assignment, you will implement a phase splitter for a full-featured post-elaboration Standard
ML internal language. Your phase splitter will compile away the entire module calculus, including module
variables, functors, and sealing, into more primitive notions of binding and abstraction. Each module will
become a single constructor and a single expression, and each signature will become a single kind and a
single constructor.

2 Overview

Your task is to create a file convert/phasesplit.sml defining a structure PhaseSplit matching the sig-
nature PHASE SPLIT which is found in the file convert/phasesplit-sig.sml, reproduced here for your
convenience.

signature PHASE_SPLIT =
sig

exception Split of string
exception Error of string

val split_module : IL1.module -> IL2.module
val split_sbnds : IL1.sbnd list

-> IL2.con * (IL2.expvar * IL2.exp) list
val split_exp : IL1.exp -> IL2.exp
val split_con : IL1.con -> IL2.con
val split_kind : IL1.kind -> IL2.kind
val split_signat : IL1.signat -> IL2.signat
val split_sdecs : IL1.sdec list

-> IL2.convar * IL2.kind * IL2.con list
end

∗Originally prepared by William Lovas (Fall 2005)

1

You should implement these phase splitting transformations by following the inference rules in Section 4.
Signal any phase splitting errors by raising Split with an appropriate error message; you may use the
Error exception for internal consistency errors such as violated invariants or the occurrence of “impossible”
conditions.

The files il1/il1.sml and il2/il2.sml define the IL1 and IL2 structures, which contain all of the
datatypes your phase splitter will manipulate. These structures also contain several utility functions for ma-
nipulating IL1 and IL2 terms that you may find useful, including substitution; you will find their signatures
in il1/il1-sig.sml and il2/il2-sig.sml, respectively.

You may use the test harness interface in the PhaseSplitTop structure (see phasesplittop-sig.sml) to
experiment with your implementation. Several interesting examples are included in the il1/il1examples.sml
file. A few simple examples to get you started are shown in Section 5.

Submit your code via AFS by copying phasesplit.sml to the directory

/afs/andrew/course/15/501-819/submit/<your andrew id>/phasesplit/

Note: Your submission will be graded automatically; if your submission that fails to compile under SML/NJ
110.59 using this assignment’s base distribution, we won’t be able to grade it.

3 Syntax

The syntax for IL1 appears in Subsection 3.1. The grammars described correspond quite closely to the
datatypes in il1.sml, except in their exclusion of existential variables. For this assignment, you may
assume that elaboration has removed all evars from the program.

IL1 is similar to the internal language from Project 2 with several extensions, many of which were
discussed in class. Some notable additions include:

• mutually recursive functions, fix (fi (xi:coni) : con′i.expi)n
i=1 end. All of f1, . . . , fn are bound in all of

the expi, and each xi is bound in the corresponding expi. The whole bundle has a product-of-functions
type.

• labelled sums, +[lab1:con1, . . . , labn:conn]. Used as part of the underlying representation of datatypes.
As with labelled records, the field order is significant. An expression expi of type coni may be injected
into the above type with inj+[lab1:con1,...,labn:conn],lab1,...,labn

labi
expi. An expression e of the above type

may be deconstructed using a case construct, casecon exp of lab1 7→ exp1, . . . , labn 7→ expn, where
each of the expi has type coni → con.

• functors, λs:sig.mod, and functor signatures Πs:sig.sig′. These are essentially as discussed in class.

• recursive type bundles, µα:knd.con. These are also used in the elaboration of datatypes. The kind knd
is restricted to the form Tn. An expression expi having type πi([µα:knd.con/α]con) may be coerced
to type πi(µα:knd.con) by writing rollπi(µα:knd.con) expi. An expression exp′i of type πi(µα:knd.con)
may be coerced to type πi([µα:knd.con/α]con) by writing unroll exp′i.

• functors, λs:sig.mod, and functor signatures Πs:sig.sig′. These are essentially as discussed in class.

All of the above prose descriptions are formalized in the rules found in Subsection 3.1. Also note that product
kinds are now written with a new syntax, ×[knd1, . . . , kndn].

IL2’s syntax is found in Subsection 3.2. This language is mostly a subset of IL1, with the following
differences:

• Modules and signatures are entirely degenerate: there are no notions of computation over modules, not
even projection of their components. What vestiges of modules remain are there simply to represent
complete programs.

2

• Products of kinds ×[knd1, . . . , kndn] and products of constructors 〈con1, . . . , conn〉 are replaced by the
unit kind 1 and dependent pair kinds Σα:κ1.κ2 along with the unit constructor ? and constructor pairs
〈c1, c2〉. Dependent pair kinds are necessary to express the dependencies from IL1’s module language.
As usual, we write non-dependent pair kinds as κ1 × κ2. We recover n-ary (non-dependent) product
kinds ×[κ1, . . . , κn] and n-ary products of constructors 〈c1, . . . , cn〉 as derived forms by treating them
like lists terminated by unit. We write π1c and π2c for the ordinary binary first and second projections
and πic for the n-ary analogue.

• Labelled product types ×[lab1:con1, . . . , labn:conn] and labelled sum types +[lab1:con1, . . . , labn:conn]
are replaced by their unlabelled counterparts, ×[c1, . . . , cn] and +[c1, . . . , cn]. The corresponding ex-
pression forms also lose their labels, referring to components by (1-indexed) position instead.

3

3.1 IL1 Syntax

3.1.1 IL1 Kinds

knd ::= T kind of types
| Πα:knd1.knd2 dependent function kinds
| ×[knd1, . . . , kndn] product kinds
| S(con) singleton kinds

3.1.2 IL1 Constructors

con ::= α constructor variables
| λα:knd.con constructor functions
| con1con2 constructor application
| 〈con1, . . . , conn〉 constructor tuples
| πicon constructor tuple projection
| µα:knd.con recursive constructors
| modv

lab1,...,labn .lab module projections
| int | char | string built-in base types
| con1 → con2 functions
| ref con references
| tagged extensible tagged unions
| tag con tags
| ×[lab1:con1, . . . , labn:conn] labelled products
| +[lab1:con1, . . . , labn:conn] labelled sums
| ∀α:knd.con polymorphic types

4

3.1.3 IL1 Expressions

exp ::= x expression variables
| n | ‘char’ | “string” integer, character, and string literals
| fix fbnd1, . . . , fbndn end mutually recursive function bindings
| unop exp built-in unary operations
| exp1 binop exp2 built-in binary operations
| exp1exp2 function applications
| handle exp1 with exp2 exception handlers
| raisecon exp exception raising
| ref exp reference cell allocation
| get exp reference cell dereference
| set(exp1, exp2) reference cell update
| rollcon exp coercion into recursive type
| unroll exp coercion out of recursive type
| (lab1=exp1, . . . , labn=expn) labelled products
| πlab1,...,labn

lab exp product projections
| injcon,lab1,...,labn

lab exp sum injection
| casecon exp of lab1 7→exp1, . . . , labn 7→expn sum analysis
| tag(exp1, exp2) injection into type tagged
| newtag[con] extension of type tagged
| iftagof exp1 is exp2 then exp3 else exp4 tag analysis
| Λα:knd.exp polymorphic abstraction
| exp[con] polymorphic application
| let x = exp1 in exp2 expression let-binding
| let s = mod in exp module let-binding
| modv

lab1,...,labn .lab module projection

3.1.4 IL1 Function Bindings

fbnd ::= f (x:con) : con′.exp function bindings

3.1.5 IL1 Modules

mod ::= s module variables
| [sbnd] structures
| λs:sig.mod functors
| mod mod′v functor application
| modv

lab1,...,labn .lab module projection
| mod :> σ sealed modules
| let s = mod in (mod′ : σ′) module let-binding

3.1.6 IL1 Bindings

sbnds ::= · | sbnd, sbnds structure binding list
sbnd ::= lab . bnd structure field bindings
bnd ::= x = exp expression variable bindings

| α = con constructor variable bindings
| s = mod module variable bindings

3.1.7 IL1 Signatures

sig ::= [sbnds] structure signatures
| Πs:sig1.sig2 functor signatures

5

3.1.8 IL1 Declarations

sdecs ::= · | sdec, sdecs structure declaration list
sdec ::= lab . dec structure field declaration
dec ::= x:con expression variable declaration

| α:knd constructor variable declaration
| s:sig module variable declaration

3.1.9 IL1 Typing Contexts

Γ ::= · empty typing context
| Γ, x:con expression variable declaration
| Γ, α:knd constructor variable declaration
| Γ, s:sig module variable declaration

3.1.10 IL1 Derived Forms

kndn def= ×[knd, . . . (ntimes) . . . , knd] repeated products
knd1 → knd2

def= Π :knd1.knd2 non-dependent arrow kinds
unit

def= ×[·] unit type

6

3.2 IL2 Syntax

3.2.1 IL2 Kinds

κ ::= T kind of types
| Πα:κ1.κ2 dependent function kinds
| 1 unit kinds
| Σα:κ2.κ2 dependent pair kinds
| S(c) singleton kinds

3.2.2 IL2 Constructors

c ::= α constructor variables
| λα:κ.c constructor functions
| c1c2 constructor application
| ? unit constructor
| 〈c1, c2〉 constructor tuples
| π1c constructor pair first projection
| π2c constructor pair second projection
| µα:κ.c recursive constructors
| int | char | string built-in base types
| c1 → c2 functions
| ref c references
| tagged extensible tagged unions
| tag c tags
| ×[c1, . . . , cn] labelled products
| +[c1, . . . , cn] labelled sums
| ∀α:κ.c polymorphic types

7

3.2.3 IL2 Expressions

e ::= x expression variables
| n | ‘char’ | “string” integer, character, and string literals
| λx:con.exp non-recursive anonymous functions
| fix fbnd1, . . . , fbndn end mutually recursive function bindings
| unop e built-in unary operations
| e1 binop e2 built-in binary operations
| e1e2 function applications
| handle e1 with e2 exception handlers
| raisec e exception raising
| ref e reference cell allocation
| get e reference cell dereference
| set(e1, e2) reference cell update
| rollc e coercion into recursive type
| unroll e coercion out of recursive type
| (e1, . . . , en) unlabelled products
| πi e product projections
| injcie sum injection
| casec e of e1, . . . , en sum analysis
| tag(e1, e2) injection into type tagged
| newtag[c] extension of type tagged
| iftagof e1 is e2 then e3 else e4 tag analysis
| Λα:κ.e polymorphic abstraction
| e[c] polymorphic application
| let x = e1 in e2 expression let-binding

3.2.4 IL2 Function Bindings

fb ::= f (x:c) : c′.e function bindings

3.2.5 IL2 Vestigal Module System

m ::= [c, e] phase split structures
σ ::= [α:κ.c] phase split signatures

3.2.6 IL2 Derived Forms

κs ::= · | κ, κs kind lists
cs ::= · | c, cs constructor lists
ebnds ::= · | x = e, ebnds expression binding lists
κ1 → κ2

def= Π :κ1.κ2 non-dependent function kinds
×[κ1]κ2

def= Σ :κ1.κ2 non-dependent product kinds
×[·] def= 1 0-ary product kind

×[κ, κs] def= κ ××[κs] non-empty n-ary product kinds
×[·] def= ? 0-ary product of constructors

×[c, cs] def= ×[c,×[cs]] non-empty n-ary product of constructors
π1c

def= π1c first projection from n-ary product
πic

def= πi−1(π2c) ith projection from n-ary product

8

4 Phase Splitting

Phase splitting is presented here as a syntax-derivation-directed translation as in class. One minor difference
from what was presented in class is that we make use here of n-ary product types and tuple expressions
rather than just pairs. (Using pairs at the expression level would actually make the code generated by our
compiler less efficient, since it would have to perform linear scans through phase-split modules to access their
components.) Accordingly, the sdecs-splitting judgment returns not just one type with a free variable, but
rather a list of types with a free variable. Similarly, the sbnds-splitting judgment returns a list of variable-
expression bindings instead of building up one large expression using let-binding. The sig- and mod-splitting
judgments account for these differences by packaging the result up in the final form we expect.

4.1 Signatures

P (sig) = σ

P (sdecs) = α:κ.c1, . . . , cn

P ([sdecs]) = [α:κ. × [c1, . . . , cn]] (1)

Rule (1): As mentioned above, this judgment packages the list of types returned by the sdecs-splitting
judgment into a product.

P (sig1) = [α1:κ1.c1] P (sig2) = [α2:κ2.c2]
P (Πs:sig1.sig2) = [β:(Παs:κ1.κ2).∀αs:κ1.[αs/α1]c1 → [βαs/α2]c2] (2)

P (sdecs) = α:κ.cs

P (·) = α:1.· (3)

P (con) = c P (sdecs) = β:κ.cs

P (lab . x:con, sdecs) = α:(1× κ).c, [π2α/β]cs (4)

P (knd) = κ′ P (sdecs) = γ:κ.cs

P (lab . α:knd, sdecs) = β:(Σα:κ′.κ).unit, [π1β, π2β/α, γ]cs (5)

P (sig) = [δ:κ′.c] P (sdecs) = γ:κ.cs

P (lab . s:sig, sdecs) = β:(Σαs:κ′.κ).[π1β/δ]c, [π1β, π2β/αs, γ]cs (6)

4.2 Modules

P (mod) = m

P (s) = [αs, xs] (7)

Rule (7): For each module variable s we create a constructor variable αs and an expression variable xs. In
your implementation you should maintain a mapping from module variables to constructor variables and
expression variables, creating αs and xs fresh the first time you need them.

P (sbnds) = c;x1=e1, . . . , xn=en

P ([sbnds]) = [c, let x1 = e1 in . . . let xn = en in (x1, . . . , xn)] (8)

Rule (8): Here we let-bind the variable-expression bindings returned by the sbnds-splitting judgment.

P (sig) = [α:κ.c] P (mod) = [c′, e]
P (λs:sig.mod) = [λαs:κ.c′,Λαs:κ.λxs:[αs/α]c.e] (9)

P (mod) = [c, e] P (mod′v) = [c′, e′]

P (mod mod′v) = [cc′, e[c′]e′] (10)

9

P (modv) = [c, e] lab = labi

P (modv
lab1,...,labn .lab) = [πic, πi e] (11)

P (mod) = m

P (mod :> sig) = m (12)

P (mod) = [c, e] P (mod′) = [c′, e′]

P (let s = mod in (mod′ : sig′)) = [[c/αs]c′, let xs = e in [c/αs]e′] (13)

P (sbnds) = c; ebnds

P (·) = ?; · (14)

P (exp) = e P (sbnds) = c; ebnds

P (lab . x = exp, sbnds) = 〈?, c〉;x = e, ebnds (15)

P (con) = c′ P (sbnds) = c; ebnds

P (lab . α = con, sbnds) = 〈c′, [c′/α]c〉; = (), [c′/α]ebnds (16)

Rule (16): A con has no dynamic part so it is okay to just make up a fresh variable for the ebnd part.

P (mod) = [c′, e′] P (sbnds) = c; ebnds

P (lab . s = mod, sbnds) = 〈c′, [c′/αs]c〉;xs = e′, [c′/αs]ebnds (17)

4.3 Kinds

P (knd) = κ

P (T) = T (18)

P (knd1) = κ1 P (knd2) = κ2

P (Πα:knd1.knd2) = Πα:κ1.κ2 (19)

P (kndi) = κi foralli 1 ≤ i ≤ n

P (×[knd1, . . . , kndn]) = ×[κ1, . . . , κn] (20)

Rule (20): We make use here of the n-ary product kind derived form.

P (con) = c

P (S(con)) = S(c) (21)

4.4 Constructors

P (con) = c

P (α) = α (22)

P (knd) = κ P (con) = c

P (λα:knd.con) = λα:κ.c (23)

P (con1) = c1 P (con2) = c2

P (con1con2) = c1c2 (24)

P (coni) = ci foralli 1 ≤ i ≤ n

P (〈con1, . . . , conn〉) = 〈c1, . . . , cn〉 (25)

P (con) = c

P (πicon) = πic (26)

10

P (knd) = κ P (con) = c

P (µα:knd.con) = µα:κ.c (27)

P (modv) = [c, e] lab = labi

P (modv
lab1,...,labn .labi) = πic (28)

P (int) = int (29)

P (char) = char (30)

P (string) = string (31)

P (con1) = c1 P (con2) = c2

P (con1 → con2) = c1 → c2 (32)

P (con) = c

P (ref con) = ref c (33)

P (tagged) = tagged (34)

P (con) = c

P (tag con) = tag c (35)

P (coni) = ci foralli 1 ≤ i ≤ n

P (+[lab1:con1, . . . , labn:conn]) = +[c1, . . . , cn] (36)

P (coni) = ci foralli 1 ≤ i ≤ n

P (×[lab1:con1, . . . , labn:conn]) = ×[c1, . . . , cn] (37)

Rules (36) and (37): Since the fields in labelled sums and products are ordered, we take this opportunity to
erase the labels.

P (knd) = κ P (con) = c

P (∀α:knd.con) = ∀α:κ.c (38)

4.5 Expressions

P (exp) = e

P (x) = x (39)

P (n) = n (40)

P (‘char’) = ‘char’ (41)

P (“string”) = “string” (42)

P (coni) = ci P (con′i) = c′i P (expi) = ei foralli 1 ≤ i ≤ n

P (fix [fi (xi:coni) : con′i.expi]ni=1 end) = fix [fi (xi:ci) : c′i.ei]ni=1 end (43)

P (exp1) = e1 P (exp2) = e2

P (exp1 binop exp2) = e1 binop e2 (44)

P (exp) = e

P (unop exp) = unop e (45)

P (exp1) = e1 P (exp2) = e2

P (exp1exp2) = e1e2 (46)

11

P (exp1) = e1 P (exp2) = e2

P (handle exp1 with exp2) = handle e1 with e2 (47)

P (con) = c P (exp) = e

P (raisecon exp) = raisec e (48)

P (exp) = e

P (ref exp) = ref e (49)

P (exp) = e

P (get exp) = get e (50)

P (exp1) = e P (exp2) = e2

P (set(exp1, exp2)) = set(e1, e2) (51)

P (con) = c P (exp) = e

P (rollcon exp) = rollc e (52)

P (exp) = e

P (unroll exp) = unroll e (53)

P (expi) = ei foralli 1 ≤ i ≤ n

P ((lab1=exp1, . . . , labn=expn)) = (e1, . . . , en) (54)

P (exp) = e lab = labi

P (πlab1,...,labn

lab exp) = πi e (55)

lab = labi P (con) = c P (exp) = e

P (injcon,lab1,...,labn

lab exp) = injcie (56)

P (con) = c P (exp) = e
P (expi) = ei foralli 1 ≤ i ≤ n

P (casecon exp of lab1→exp1, . . . , labn→expn) = casec e of e1, . . . , en (57)

P (exp1) = e1 P (exp2) = e2

P (tag(exp1, exp2)) = tag(e1, e2) (58)

P (con) = c

P (newtag[con]) = newtag[c] (59)

P (exp1) = e1 P (exp2) = e2 P (exp4) = e4 P (exp3) = e3

P (iftagof exp1 is exp2 then exp3 else exp4) = iftagof e1 is e2 then e3 else e4 (60)

P (knd) = κ P (exp) = e

P (Λα:knd.exp) = Λα:κ.e (61)

P (exp) = e P (con) = c

P (exp[con]) = e[c] (62)

P (exp) = cone P (exp′) = e′

P (let x = exp in exp′) = let x = e in e′ (63)

P (exp) = e P (mod) = [c′, e′]
P (let s = mod in exp) = let xs = e′ in [c′/αs]e (64)

P (modv) = [c, e] lab = labi

P (modv
lab1,...,labn .labi) = πi e (65)

12

5 Examples

The following interactions with the SML/NJ top-level will give you you some simple examples how the splitter
should work. More sample inputs may be found in the IL1Examples structure defined in il1/il1examples.sml.

5.1 Kinds

- PhaseSplitTop.split_kind IL1Examples.kind;
|- *[S(*[a : int, b : +[1 : *[], 2 : *[]]]), Type, S(char)]

~~> Sigma __28:S(*[int, +[*[], *[]]]).
Sigma __27:Type. Sigma __26:S(char). 1

val it = () : unit

5.2 Constructors

- PhaseSplitTop.split_con IL1Examples.con;
|- #3 <int, char, string, +[1 : *[], 2 : *[]]>

~~> #1 (#2 (#2 <int, <char, <string, <+[*[], *[]], <>>>>>))
val it = () : unit

5.3 Expressions

- PhaseSplitTop.split_exp IL1Examples.exp1;
|- #b [a, b, c] {a = 12, b = ’c’, c = "xyzzy"}

~~> #2 (12, ’c’, "xyzzy")
val it = () : unit

5.4 Signatures

- PhaseSplitTop.split_signat IL1Examples.signat1;
|- [t |> t_0 : Type,

x |> x_2 : t_0,
u |> u_1 : S(*[1 : t_0, 2 : int]),
y |> y_3 : u_1]

~~> [a’_39 :
(Sigma t_29:Type.
Sigma __38:1. Sigma u_31:S(*[t_29, int]). Sigma __35:1. 1).

[[], #1 a’_39, *[], #1 (#2 (#2 a’_39))]]
val it = () : unit

5.5 Modules

- PhaseSplitTop.split_module IL1Examples.module1;
|- [t |> t_0 = string,

x |> x_2 = "hello",
u |> u_1 = *[1 : t_0, 2 : int],
y |> y_3 = {1 = x_2, 2 = 12}]

~~> [<string, <<>, <*[string, int], <<>, <>>>>>,
let var_45 = ()
in

let x_41 = "hello"
in

13

let var_44 = ()
in

let y_43 = (x_41, 12)
in

(var_45, x_41, var_44, y_43)
end

end
end

end]
val it = () : unit

14

