HOT Compilation (15-501/15-819) Fall 2005
Project 2: Type Inference

William Lovas (wlovas@cs)

Out: Thursday, October 6, 2005
Due: Thursday, October 20, 2005 (before midnight)

1 Introduction

Static typing offers the advantage of catching many programming errors at compile time rather than runtime,
but writing down type annotations for complex programs can become quite tedious, especially in higher-order
polymorphic code. Therefore, many higher-order polymorphically-typed languages, like ML and Haskell,
allow programmers to write unannotated programs, relying on type inference to determine the best possible
type to assign to those programs.

In this assignment, you will implement a type inference engine for a small but interesting subset of
Standard ML. In implementing your typechecker, you will have to deal with several important issues that
arise in the front-end compilation of ML-like languages, including how to communicate type constraints
between disparate pieces of code and when and how to introduce and eliminate polymorphism. This handout
will explain how to answer these questions.

2 Overview

Your task is to create a file typecheck. sml defining a structure Typecheck matching the signature TYPECHECK
found in typecheck-sig.sml, reproduced here for your convenience.

signature TYPECHECK =
sig
exception Check of string (* for ordinary type errors *)
exception Error of string (* for internal, unrecoverable errors *)
datatype dec = DecExpTy of Syntax.variable * Syntax.polyty
DecTyVar of Syntax.variable
dec list

type context
val unify : Syntax.ty -> Syntax.ty -> unit

val check_program : context -> Syntax.program
-> (Syntax.variable * Syntax.polyty) list
end

The key component of your typechecker is the check_program function. This function takes as its input
a typing context and a Syntax.program, which is simply a list of bindings. It produces as its output a
list of identifier typing declarations, one for each binding in the input program. Your inference engine will
depend upon the unify function which implements type unification.

Judgment Inputs Outputs | Interpretation
;Y Finfer e = Y037 Y e ', o, 7 | Infer type 7 for expression e
;3 F infer bindings = X505 | T, 3, bindings | ¥/, o, IV | bindings introduce context T
I; ¥ b infer binding = ¥/;0; (x:7) | T, X, binding | ¥, o, z, 7 | binding introduces declaration x:7
3+ unify 71 with m = Y0 ¥, T, T X, o Unify types 71 and 7
Y FoclE|[S]T = ¥;0 S, E S, T X o Perform “occurs” check for E[S] in 7

Table 1: Summary of type inference judgements for Poly-SML

For this assignment, a context can contain two sorts of declarations: ordinary expression variable typing
declarations and type variable declarations. Since the language for this assignment has no kinds other than
“type”, type variables go into the context unadorned. (Furthermore, as you will see, the type variables really
only serve as “scoping tokens” to determine how much polymorphism to introduce.)

You should implement unify and check_program using the type inference algorithm outlined in class
and Section 3. Signal any type inference errors by raising Check with an appropriate error message; you
may use the Error exception for internal consistency errors such as violated invariants or the occurrence of
“impossible” conditions.

The file syntax.sml defines the Syntax structure, which contains all of the datatypes your checker will
manipulate.

You may use the test harness interface in the Top structure (see top-sig.sml) to experiment with your
implementation. Several interesting examples are included in the examples.sml file.

Submit your code via AFS by copying typecheck.sml to the directory

/afs/andrew/course/15/501-819/submit/<your andrew id>/proj2

Note: Your submission will be graded automatically; if you submit a typecheck.sml that fails to compile
under SML/NJ 110.0.7 using this assignment’s base distribution, we won’t be able to grade it.

3 Details

In this assignment, we’ll be working with a simple polymorphic subset of Standard ML, which we’ll refer to
as Poly-SML. The abstract syntax of Poly-SML is shown in Figure 1. This grammar corresponds closely to
the datatypes defined in syntax.sml. The rules implementing type inference and its constituent parts are
shown in Figures 3, 4, and 5. The algorithm is based on five judgments, summarized briefly in Table 1.

Type inference proceeds by making up fresh evars whenever it needs a type — like in the rule for fn z = e,
for the type of the bound variable — and using unification to determine what those evars should be bound
to whenever it encounters constraining information — like in the rule for e; es, when it knows that e; must
have an arrow type.

All of the judgments take an existential context ¥ describing what evars are currently “in play”, that
is which evars have not yet been substituted away. All of the judgments also produce a new X, since they
may have created new evars or substituted away old ones, as well as an evar substitution o delineating what
types old evars have been bound to. By design, the 7 in I'; ¥ + infer e = ¥/;0; 7 has already been acted
on by o, and similarly the IV in T'; ¥ I infer bindings = ¥';0; T has already been acted on by o. In your
implementation, evars will be implemented by mutable ref cells, and instead of maintaining a substitution,
you’ll simply update the ref cells as appropriate.

The unification judgment, ¥ F unify 71 with 75 = ¥'; o, takes the place of type equivalence; instead of
simply checking that two types are equivalent, it tries to make the two types equivalent by filling in evars
as appropriate. You can see this in the two rules for unifying a type 7 with an evar F, where the existential
context and evar substitution returned reflect that E has been bound to 7, provided that 7 and E pass the
“occurs” check.

The “occurs” check, ¥ F oc[E][S]T = ¥'; 0, has three important effects:

T ::= bool
| int
| 71 X 7o
| 7list

|7'1—>7'2

| E[S]

en=ux
| true
| false
| if e; then e; else e3
|
| e1 0pey
| (e1,€2)
T e
T €
nil

€1 :.€2

fmzx=e
€1 €2
let bindings in e end

el T

binding ::=val x = e

| fun fx=e

bindings ::= - | binding bindings

program ::= bindings

|
|
|
|
| case e of nil = ¢, | z:
|
|
|
|

booleans

integers

pairs

lists

functions
universal variables

existential variables

monomorphic types

polymorphic types

addition
subtraction
multiplication

integer equality

variables

boolean literals

boolean test

integer literals

integer operations

pairing

first projection

second projection

empty list

non-empty list

Is = e, list destructor
abstraction
application
let-binding

constrained expressions

value binding

recursive function binding

program

Figure 1: Poly-SML, a subset of SML including polymorphism

Io=- empty context

| T,2:T expression variable declaration

| T« universal variable declaration
Y= empty existential context
| 2, E[S] existential variable with dependency set S
o =id identity substitution
| [T1,--yTn/E1, ..., Ep] substitution for evars
| 01009 composition of substitutions

Figure 2: Syntax of contexts and substitutions

1. It ensures that the evar E' does not appear in the type 7, since the unification of E and 7 would create
a cyclic type,

2. It ensures that any uvars in 7 are in E’s dependency set .S, and
3. It forces any other evars E’ in 7 to have smaller dependency sets.

The latter two properties are used to implement polymorphic generalization. When we come to a point
where we want to introduce polymorphism, i.e. a val or fun binding, we make up a fresh type variable
«. Then, after inferring a type for the body of the binding, we scan its type for evars that can depend
on «. These are exactly the evars that were introduced but never eliminated while inferring a type for the
body. Since they weren’t substituted away, they represent unconstrained types that may be polymorphically
generalized. (Note: for simplicity’s sake, we haven’t bothered with the value restriction — all bindings will
have their types generalized.)

It is important to realize that the “type variables” we add to the context during type inference don’t
actually represent real types; rather they serve merely as “scoping tokens” to allow us to determine which
evars represent unconstrained types as opposed to those that represent constraints which just haven’t been
determined yet. (If we were implementing the value restriction, such latent constraints could arise from
non-generalized bindings, like val | = (fn « =) nil.)

Using unification, we only make choices that are forced upon us by real constraints due to the structure
of a term. Therefore, after we finish typechecking a term, we can be sure that we have found the least-
constrained type possible for that term. This corresponds to determining the “most general unifier” for a
set of constraints in the literature on unification.

The inverse process to generalization is instantiation: when we encounter a variable with a polymorphic
type, we instantiate its type variables with fresh evars — see the inference rule for variables in Figure 4. In
this way, every use of a polymorphic variable can be given a different type, just like we’d expect.

;X Finfer e = Y057

I'; ¥ F infer true = X;id; bool I'; ¥ I infer false = 3;id; bool

I X Finfer e; = Xq;01;711
o1(T); X1 Finfer ey = Yo;09; 7
(02 001)(T); Bz F infer e3 = Xs3;03;73
Y5 b unify (o3 0 02)(71) with bool = X4;04
¥4 b unify (04 0 03)(72) with o4(73) = 505

I'; X | infer if e; then ey else e3 = 3s5; (05 004003002 007); (05 0 04)(T3)

I'; ¥ Finfer n = X;id;int

(Op € {+’ _7 *})

I'; ¥ Finfer e; = Xq;01;11 I ¥ Finfer e; = X015
Ul(r); 1k infer €y = 22;02;7'2 Jl(r);El F infer €y = 22;0'2;’7'2
Yo b unify oo(m) with int = 23503 Yo F unify o3(m) with int = 3503
Y3 F unify o5(m2) with int = 24504 Y3 F unify o5(m2) with int = 24504
;¥ Finfer eq opeg = Xy; (04 003 009 0 01);int ;¥ F infer ey =eg = Xy; (04 0 03 0 09 0 01); bool
I'; Y Finfer e; = Xq;01;711 01(T); Xy Finfer es = Yo; 09; 7

I; 2+ infer (e1,e2) = Xo; (02 0 01);02(T1) X T2

I':¥ Finfer e = ¥/;0'; 7/ ;¥ Finfer e = ¥/;0'; 7
(Er, Ex &%, = BTV(T)) (Er, B2 ¢ 5,8 = BTV(I))
' Eq[S], E2[S] F unify 77 with By x Ey = X" 0" ' Eq[S], E2[S] F unify 77 with By x Ey = X" 0"
[; Y Finfer mp e = X5 (0" 0 0’); 0" (EY) [; Y Finfer m e = X5 (0" 0 0’); 0" (Es)

I ¥ Finfer e; = Y0151
Jl(F);Zl F infer €y = 22;0'2;’7'2
(E¢X,S=BTV()) Yo F unify 7 with oa(7) list = X3; 03
I'; ¥ F infer nil = X, E[S];id; E list ;¥ F infer eq :ieg = X3; (03003 001); (03 009)(71) list

'Y Finfer e = Y1015
(E¢%4,S=BTV(I))
Y1, E[S] F unify 7, with FE list = ¥5; 09
(02 001)(T"); 3o F infer e, = Xs3;03;73
(03009001)(,z:E,zs: Elist); X3 b infer e, = X4;04; 724
Y4 F unify o4(73) with 74 = X5; 05

I'; ¥ infer (case e of nil = e, | x5 = e.) = ¥s5;(05 004003 0030071);05(74)

Figure 3: Type inference rules for Poly-SML

(continued) ’F; Y Finfer e = X037

(E¢%,S=BTV(I)) (T,z:E); (%, E[S]) & infer e = X505 7/
;Y Finfer (fnz =€) = X;0';0'(E) — 7'

I'; Y Finfer e; = Xq;01;711 01(T); X4 Finfer es = Yo; 09; 7
(E ¢39,S=BTV()) Yo, E[S] F unify o2(71) with 5 — E = X3; 03
;¥ infer e es = X3; (03 009 0 01);03(FE)

I; ¥ & infer bindings = ¥';0'; T’ (o' (1), T"); ¥/ - infer e = X5 0”57
I'; 2 F infer let bindings in e end = X5 (6" o 0’); 7

I(xz) =Vay. ...Ya,. T (Er,...,E, ¢%,S=BTV(I))
;Y & infer ¢ = (2, E1[S], ..., En[S));id; [E1, ..., En/aq, ..., apn|T

;Y Finfer e = Y5 0% 7" X' Funify 77 with 7 = X7 0"
;Y Finfer (e:7) = X5 (0" o0’); 7

]r; Y F infer bindings = ¥'; o T

I'; ¥ Finfer - = ¥;id; -

[; ¥+ infer binding = ¥';0'; (z:T) (o' (), 2:T); X" k- infer bindings = ¥";0";T"
['; 3+ infer binding bindings = ¥"; (0" o o'); (z:0”(T),T")

’F; 3 F infer binding = X/; 05 (x:T) ‘

(T,a); X Finfer e = ¥/50's 7 ({E1,...,E,}={evars EinT |aeX(E)})
(a1,...,a, & dom(T)) o' =laq,...,an/E1,...,Ey]
;Y Finfer val z = e = (X' \ {E1,...,En}); (06" o d'); (z:Vay. ... VYa,.d" (1))

(o € dom(T)) (E1, B2 ¢%,S=BTV(I)U{a})
(T, o, f:Ey — Eo,x:E1); (3, E1[S], E2[S]) - infer e = X';0'; 7
¥ b unify o/ (Ez) with 7 = X"; 0"
({F1,...,E,} ={evars Ein (6" 00')(E1 — E2) |aeX'(E) })
(ag,...,a, € dom(T)) o=la,...,an/E1,...,Ey]0o0" 00’
;Y Finfer fun f o =e= (X" \{E1,...,En});0; (f:Vai. ... Va,.0(E1 — E»))

Figure 4: Type inference rules for Poly-SML, continued

¥ b+ unify 71 with 7o = ¥/ 0

(FeX)
Y unify E with £ = 3;id

(2(E)=19) Y+ oc[E][S]T = X0 (2(FE)=25) Y+ oc[E][S]r = Y0
¥+ unify E with 7 = (X'\ E); ([o(7)/E] o o) ¥+ unify 7 with £ = (X'\ B); ([o(7)/E] o o)
3 F unify bool with bool = ¥;id Y b unify int with int = X;id ¥ F unify o with o = ¥;id

Y+ unify 7 with 7 = X0’ X'+ unify o/ (7]) with o/(13) = £";0”

¥k unify 71 — 7] with 5 — 75 = %”; (06" 0 0')

Y+ unify 7 with 7 = X0’ X'k unify o/(7]) with o/(13) = £";0”

¥ b+ unify 71 x 71 with 75 x 7, = £"; (6" 0 0’)

¥ b unify 7 with m = Y50’
¥ F unify 7 list with 7 list = ¥/; 0’

|2+ oclE][S]r = Yo |

(E#AE) (EE)=5) (E"¢%)
SFoc[E|[S|E = (Z\ E'),E"[SN ') [E"/E]

(a € 8)
> F oc[E][S]bool = ;id S F oc[E][S]int = %;id S F oc[E][S]a = % id

Y OC[EHS]Tl = 21;0'1 Y1 F OC[EHS}O](TQ) = 22;0'2
Y F oc[E][S]T1 — T = Xa; (020 071)

Y FoclE|[S]m = X1;01 1 Foc[E][S]o1(2) = ;09
¥k oc[E][S]T1 x 72 = Xa; (02 0071)

¥+ oc[E][S]T = ¥'; 0
¥ F oclE][S]T list = ¥'; 07

Figure 5: Unification and the “occurs” check

