
Project 2: Part 6: Caching Extents

Due: 11:59PM Wednesday, March 24, 2010

1 Introduction

In this lab you will build a server and client that cache extents at the client, reducing the load
on the server and improving client performance. The main challenge is to ensure consistency of
extents cached at different clients. To achieve consistency we will use the caching lock service from
Part 5.

First you’ll add a local write-back extent cache to each extent client. The extent client will serve all
extent operations from this cache; the extent client will contact the extent server only to fetch an
extent that is not present on the client. Then you’ll make the caches at different clients consistent
by forcing write-back of the dirty cached extent associated with a filehandle (and deletion of the
clean extent) when you release the lock on that filehandle.

Your client will be a success if it manages to operate out of its local extent and lock cache when
reading/writing files and directories that other hosts aren’t looking at, but maintains correctness
when the same files and directories are concurrently read and updated on multiple hosts.

2 Getting started

There are no additional files or changes for this part.

2.1 Testing Performance

Our measure of performance is the number of put and get RPCs that your extent server receives.
You can tell the extent server to print out a line every 25 RPCs telling you the current totals as
you did for the lock server in Part 5, by setting RPC COUNT to 25.

Then you can start the servers, run the test-lab-4-c script, and look in extent server.log to see how
many RPCs have been received.

% export RPC_COUNT=25
% ./start.sh
% ./test-lab-4-c ./yfs1 ./yfs2
Create/delete in separate directories: tests completed OK
% grep "RPC STATS" extent_server.log
...

1



RPC STATS: 6001:801 6002:1402 6003:797
% ./stop.sh

The RPC STATS line indicates the number of put, get and getattr RPCs received by the extent
server. The above line is the output of our solution for Part 5. Your goal is to reduce those numbers
to about a dozen puts and at most a few hundred gets.

3 Step One: Extent Cache

In Step One you’ll add caching to your extent client, without cache consistency. This cache will
make your server fast but incorrect. (You can simply modify extent client.cc and extent client.h,
or if you’d like, you can add the code to a sub-class in a separate file. Remember to svn add any
new files you create.)

get() should check if the extent is cached, and if so return the cached copy. Otherwise get() should
fetch the extent from the extent server, put it in the local cache, and then return it to the YFS
client. put() should just replace the cached copy, and not send it to the extent server. You’ll find it
helpful for the next section if you keep track of which cached extents have been modified by put()
(i.e., are ”dirty”). remove() should delete the extent from the local cache.

When you’re done, set RPC COUNT and run test-lab-4-c giving the same directory twice, and
watch the statistics printed by the extent server. You should see zero puts and somewhere between
zero and a few hundred gets (or perhaps no numbers at all, if the value of RPC COUNT is more
than the number of gets). Your server should pass test-lab-4-a.pl and test-lab-4-b if you give it the
same directory twice, but it will probably fail test-lab-4-b with two different directories because it
has no cache consistency.

4 Step Two: Lock Client and Server, and Testing with RPC LOSSY=0

In Step Two you’ll ensure that each get() sees the latest put(), even when the get() and put() are
from different YFS clients. You’ll arrange this by ensuring that your extent client writes a file’s
modified (dirty) cached extents back to the extent server before the client releases the lock on that
file. Similarly, your server should delete extents from its cache when it releases the lock on the
relevant file.

You will need to add a method to the extent client to eliminate an extent from the cache. This
flush() method should first check whether the extent is dirty in the cache, in which case it sends
it to the extent server. Extents that your client has removed (with the extent client’s remove()
method) should also be removed from the extent server (if the extent server knows about them).

Your client will need to call flush() just before releasing a lock back to the lock server. You could
just add flush() calls to yfs client.cc before each release(). However, now that your lock client
handles the caching of locks, flushing the extents after each release is overkill; what you really want
is to flush the extents only once the client is forced to give the lock back to the lock server.

We provide an interface for this in the form of the lock release user class, defined in lock client cache.h.
This is a virtual class supporting only one method: dorelease(std::string lockname). Your job is to

2



subclass lock release user and implement that subclass’s dorelease method to call flush() on your
extent client for whatever data is about to lose its lock. Then, create an instance of this class and
pass it into the lock client cache object constructed in yfs client.cc. Finally, your lock client cache
must call the dorelease() method of its lu object before it releases a lock back to the lock server.
(Note that lu was defined and initialized in the code we provided you for Part 5.) Overall, this will
ensure that any dirty extents are flushed back to the cache before the lock is released, so that when
the next client gets the lock and fetches the extent, it will see consistent data.

You should also keep extent meta-data cached along with the extents, and flush dirty meta-data
back to the extent server along with the extents. If an extent is cached, then any calls that set
attributes should change the meta-data in the cache, and need not propagate to the extent server
until flush() is called.

When you’re done with Step Two your server should pass all the correctness tests (test-lab-4-a.pl,
test-lab-4-b, and test-lab-4-c should execute correctly with two separate YFS directories), and you
should see a dramatic drop in the number of puts and gets received by the extent server.

5 Evaluation Criteria

We will test that your code passes the tests from part 4, as mentioned above, and we will check
that there is a dramatic drop in the number of puts and gets received by the extent server.

6 Handin

Please submit all the files necessary for running Part 6, including the Makefile to /tags/part6.

7 C++ Tutorials and Resources

- C++ Tutorial
http://www.cplusplus.com/doc/tutorial/

- C++ Reference
http://www.cppreference.com/wiki/start

3


