A* - Informed Search
15-491, Fall 2008

Manuela Veloso
Carnegie Mellon

(Thanks to past instructors and several book authors)

Uninformed Search Complexity

N = Total number of states

[|
= B = Average number of successors (branching factor)
= [= Length for start to goal with smallest number of steps
= Q = Average size of the priority queue
= [max = Length of longest path from START to any state
Algorithm Complete Optimal Time Space
BFS Breadth First Y Y, If all trans. O(Min(N,B)) O(Min(N,B))
Search have same cost
BIBFS | Bi- Direction. Y Y, If all trans. O(Min(N,2B7)) O(Min(N,2B7))
BFS have same cost
PCDFS | Path Check Y N O(BLmax) O(BL,,.,)
DFS
MEMDF | Memorizing Y N O(Min(N, BEmaxy) O(Min(N, BEmaxy)
S DFS
IDS Iterative Y Y, If all trans. O(A) O(BL)
Deepening have same cost

Uninformed vs Informed

= Uninformed - only guided by
= Successor relationships
= topological structure (leftmost,...)
= length as number of nodes

= Informed
= assume cost of edges
= more knowledge?

Search Revisited

States ready to

1. Store a value f(s) at each state s
2. Choose the state with lowest f to expand next

3. Insert its successors

If f(.) Is chosen carefully, we will eventually find the
lowest-cost sequence)

e UCS (Uniform Cost Search)
() = g(n)

* g(n) - cost of each node already exp
length of shortest path from START to n

* Implementation — Store open successor states (waiting to be
expanded) in a priority queue for efficient retrieval of minimum f

e Optimal = Guaranteed to find lowest cost sequence, but
guidance is about known path...

Estimate “Cost” to Goal

* Introduce a function h(s) to estimate
the unknown distance from
state s to the goal

Heuristic Functions

h is a heuristic function for the search problem

h(s) = estimate of the cost of the shortest path
from sto GOAL

h cannot be computed solely from the states
and transitions in the current problem > If we
could, we would already know the optimal pathl

h(.) is based on external knowledge about the
problem = /nformed search

Questions:
1. Typical examples of h?

2. How to use h?
;. What are desirable/necessary properties of h?

Heuristic Functions Example

x .

START

Nk

X

= h(s) = Euclidean distance to GOAL

Heuristic Functions Example

GOAL

START
\

X

= h(s) = Euclidean distance to GOAL
n Euclidean distance 1s an heuristic.

Heuristic Functions Example

S GOAL

= How could we define h(s)?

1VO9

Misplaced titles:
hi(s)=7

Manhattan distance:
h,(s)=2+3+3+2+4+2+0+2=18

11

First Attempt: Greedy Best First Search

= Simplest use of heuristic function: Always select the
node with smallest h(.) for expansion (i.e., f(s) = h(s))

Initialize PO

Insert START with value h(S7ART) In PQ

While (PO not empty and no goal state is in PQ)
Pop the state s with the minimum value of h from APQ
For all s’ Iin succs(s)

If s’ is not already in AQ and has not already been visited
Insert s” in PQ with value h(s’)

12

Problem

4
2 < 51 . 1&)2

START > A e

h=4 h=3 h=2 h=1 h=0

s What solution do we find in this case?

= Greedy search clearly not optimal, even
though the heuristic function is non-stupid

13

Trying to Fix the Problem

f(A) =g(A) + h(A) =13

f(B)=9(B) +h(B)=11

= g(9) is the cost from START to s only
= h(s) estimates the cost from sto GOAL

= Key Insight: g(s) + h(s) estimates the tota/ cost
of the cheapest path from START to GOAL going
through s

m 2 A* algorithm 14

A* Algorithm

= 1(s) = g(s) + h(s)

= heuristics
= good, less good..., alternative, efficiency
= “easy” to define...

= efficiency

15

Can A* Fix the Problem?

4
CROZORO0
START A
h=4 h=3 h=2 h=1 h=0
{(START.,4)}
1(4,5)}
(f(A)=h(A)+g(A) = 3 + g(S7ART) + cost(START,A) =3 + 0 + 2)
1(8,3) (1)}
(f(O)=h(O)+g(C) =1 + g(A) + cost(4,() =1+ 2+ 4)
1(65)}

(F(O)=h(O+g(C) =1 + g(b) + cost(5,C) =1+ 3 + 1)
{(GOAL,6)}

16

Can A* Fix the Problem?

e
START {1 A
h=4 h=3 h=2 h=1 h=0
{(S7TART,4)}
(F(A)=h(4)+ g(A)= (START) + COSt(START,A) = 3 + 0 + 2)
(F(O)=h(C) + g(O)= 1 + g(A) + cost(4,
{(C5)}

(F(O)=h(O) + g()= 1+ g(h) + cost(B,C) =1+ 3 + 1)
{(GOAL,6)}

17

A* Core Issues

= Termination condition

= Revisiting states

= Algorithm

= Optimality

= Avoiding revisiting states
= Choosing good heuristics
= Reducing memory usage

18

A* Termination Conditi

h=28

Queue:
{(B,4) (A,8)
{(C.4) (A,8)

(D,4) (A,8)

{(A,8) (G,10)}
= Stop when GOAL is popped from the queue.

19

Revisiting States

A state that was already in the @
gueue Is re-visited. h

How Is its priority updated? @ I

20

Revisiting States

A state that had been already @
expanded is re-visited. h

(Careful: This is a different I

example.) @

21

Pop state s with lowest f(s) in queue
If s = GOAL
return SUCCESS
Else expand s:
For all s’ in succs (s):
f(s)=g(s’) + h(s’) = g(s) + cost(s,s’) + h(s))
If (s’ not seen before OR
s’ previously expanded with f(s’) > f OR
s’ in PQ with with f(s’) > 1)
Promote/Insert s’ with new value f' in PQ
previous(s’) € s
Else Ignore s’ (because it has been visited and its current path cost f(s’)
IS still the lowest path cost from START to s’)

22

Under what Conditions is A* Optimal?
h=6

ﬁ {(START,6)}
{(GOAL,3) (A,8)}

Final path:
{START, GOAL}
with cost = 3

= Problem: h(.) I1s a poor estimate of path
cost to the goal state

23

Admissible Heuristics

s Define h*(s) = the true minimal cost to the
goal from s

= his admissible if
h(s) <= h*(s) for all states s

= I.e., an admissible heuristic never
overestimates the cost to the goal.
"Optimistic” estimate of cost to goal.

A* Is guaranteed to find the optimal path
If h 1S admissible. (proof in chapter 4)

24

Examples

For the navigation problem:

The length of the shortest

path is at least the distance

— GOAL petween s and GOAL >

Euclidean distance is an

admissible heuristic

h(s) ?

What about the puzzle?

\/
o W
oy EN T
o U1 N

GOAL

251|

1VO9

Misplaced titles:
hi(s)=7

Manhattan distance:
h,(s)=2+3+3+2+4+2+0+2=18

26

Comparing Heuristics

L=4steps |L=8steps |L=12
h, = misplaced tiles steps
Iterative 112 6,300 3.6 x 10°
Deepening
h, = Manhattan A*with |13 39 227
distance heuristic h,
A* with 12 25 73
heuristic h,

= Overestimates A* performance because of the
tendency of IDS to expand states repeatedly

= Number of states expanded does not include
log() time access to queue

Example from Russell&Norvig

27

Comparing Heuristics

p)

hy(s) =7
h,(s5)=2+3+3+2+4+2+0+2=18

h, is larger than h; and, at same time, A* seems to be more
efficient with h,

h, dominates h,, if h,(s) >= h,(s) for all s

For any two heuristics h, and hy:

If h, dominates h, then A* is more efficient (expands
fewer states) with h,

Intuition: since h <= h*, a larger h is a better approximation of the true path cgst

Limitations

= Computation: In the worst case, we may
have to explore all the states

= The good news: A* Is optimally efficient
- For a given h(.), no other optimal
algorithm will expand fewer nodes

= The bad news: Storage is also potentially
exponential (all states)

29

IDS (lterative Deepening Search)
= Need to make DFS optimal

= IDS (lterative Deepening Search):

= Run DFS by searching only path of length 1
(DFS stops if length of path is greater than 1)

« If that doesn’t find a solution, try again by
running DFS on paths of length 2 or less

« If that doesn’t find a solution, try again by
running DFS on paths of length 3 or less

= Continue until a solution iIs found

30

Example: IDA* (lterative Deepening A*)

= Same idea as Iterative Deepening DFS except use f(s) to
control depth of search instead of the number of transitions

= Example, assuming integer costs:

1. Run DFS, stopping at states s such that f(s) > 0
Stop If goal reached
2. Run DFS, stopping at states ssuch that f(s) > 1
Stop If goal reached
3. Run DFS, stopping at states s such that f(s) > 2
Stop If goal reached
........ Keep going by increasing the limit on f by 1 every time

Complete (assuming we use loop-avoiding DFS)
Optimal

More expensive in computation cost than A*
Memory order L as in DFS

31

Summary
Informed search and heuristics

First attempt: Best-First Greedy search
A* algorithm

= Optimality

= Condition on heuristic functions

= Completeness, efficiency

IDA*

Nils Nilsson. Problem Solving Methods in Artificial
Intelligence. McGraw Hill (1971)

Judea Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving (1984)

Chapters 3&4 Russell & Norvig 32

