All images are in the public domain and were obtained from the web unless otherwise cited.

Lecture: Sensors

15-491, Fall 2008

Outline

- Sensor types and overview
- Common sensors in detail
- Sensor modeling and calibration
- Perception processing preview
- Summary

Open Loop Control

• No sensing input

Why Sense?

- To acquire information about the environment and oneself
- Open loop control suffers from
 - Uncertainty, changes in the world
 - Error detection and correction

The Sensing Loop

• "Feedback" control

Issues to Address

- What sensors to use?
- How to model the sensor?
- How to calibrate intrinsic/extrinsic models?
- What low-level processing?
- What high-level processing (perception)?

Comparison: Human Sensors

- Sense:
 - Vision
 - Audition
 - Gustation
 - Olfaction
 - Tactition

- **Sensor:**
 - Eyes
 - Ears

- Tongue

– Nose

– Skin

Robot Sensors

Sense:

- Equilibrioception
- Proprioception
- Magnetoception
- Electroception
- Echolocation
- Pressure gradient

Sensor:

- Accelerometer
- Encoders

- Magnetometer
- Voltage sensor
- Sonar

Array of pressure sensors

LiDar Sensing

LiDar Variations

Tartan Racing Team

Boss vehicle

Sensor Examples

- (CMU) Tartan Racing Urban Challenge vehicle
- Groundhog, subterranean mapping (CMU)
 Carnegie Mellon Mine Mapping Project
- Ocean explorer www.oceanexplorer.noaa.gov

Popular Sensors in Robotics

- LiDar
- Infrared
- Radar
- Sonar
- Cameras
- GPS
- Accelerometers
- Gyros, encoders
- Contact switch

Auditory

Other Robot Sensors

Sensors We Will Look At Today

- Exterioceptive
 - Sonar, LiDar, IR
 - Vision comes later
- Proprioceptive
 - Encoders
 - Accelerometers
 - Gyroscopes
 - GPS (hard to categorize)
 - Micro-switch

SoNaR: Sound Navigation and Ranging

- Often called sonar, ultrasound, Sodar
- Emit a directional sound wave, and listen for echo(s), time the response

- Key assumption: sound travels at constant speed
- v=344 m/s (dry air, 21C, sea-level)
- So we have

Power of Returned Signal

- Signal power dissipates as wave travels
 - Depends upon the shape of the wavefront
 - Driven by shape of transmitter (same for radar)

 $Area = \pi r^2 = \pi \left[d \tan\left(\frac{\alpha}{2}\right) \right]^2 \propto d^2$

• Typically a directional cone

d

α

Reflection Strength

• Function of surface angle and surface properties

How To Detect the Echo?

- Electronic signal processing
- Detect sufficiently large rapid change

Imperfect Sensing

- What can go wrong?
 - Speed of sound changes with temperature, pressure, humidity

$$v_{ideal} = \sqrt{\frac{\gamma k T}{m}}$$

- Surface reflection properties
- Atmospheric attenuation (finite range)
- Multiple echoees (multi-path)
- Quantization in timing
- Inaccuracies in detecting response signal onset
- Cross-talk (echoes from other sensors)

Sensor Noise

 Fixed object, sensor returns different values over time => random process

Bigger Picture: Perception

- Given sensor readings, how does robot determine the structure and content of the world?
- Usual way is to *model* the problem

Sensor Model

- Model the device physics to obtain the expected device properties and parameters
 - Intrinsic model: Device itself
 - Extrinsic model: Where the device is on the robot
- Collect data and *fit* model parameters
 - This is *calibration*
- Level of complexity is a trade off
 - Computation, accuracy, reliability, domain knowledge
- Often need to reason explicitly about *uncertainty*

Modeling Sonar

- What should we model?
- Usually:
 - Mapping from time to range (first return only)
 - We have a physics model with parameters. Calibrate to get parameter values.
 - Model sensor uncertainty
 - How do we do this? What distribution should we use?
- Other possibilities:
 - Signal strength to surface orientation?
 - Using secondary peaks?
 - Profile of response?

Calibration

- We have a model
 - Derived from the physics (best approach)
 - Look at data and guess a low dimensional model
- Estimate the parameters from a known setup
 - Measure signal response at different distances
 - Optionally different angles, surfaces, humidity, altitude...
 - Fit parameters to the data (e.g. regression) Outlier

Sensor Noise Modeling

- Sensors are **never** perfect
 - Unmodeled effects
 - True randomness in the environment, robot, and sensing process
- Systematic errors (bias)
- Drift, jumps

Sensor Bias

- Return may vary as a function of physical setup
 - Surface material/color, orientation, range, atmosphere

Sensor Noise Model

- Enter the world of statistics
 - Usually choose a parametric model and estimate parameters e.g. Gaussian

Sensor Filtering

- Usually apply some level of filtering to raw sensor data before feeding into rest of system
- Examples
 - Thresholding you've already seen this
 - Smoothing simple filters
 - Kalman filtering more complex filter exploiting additional domain knowledge
- Resulting estimate used to build perception models
 - Occupancy grids, trackers, etc.

LiDar

- Light Detection and Ranging
- Different variants, we'll focus on time to return
 - Most common to robotics
 - Same model as Sonar

Narrow	pules of	F
laser lig	jht	

LiDar

- Timed "echo" from reflection
- Speed of light >> speed of sound

SICK LiDar

- Very common unit
- Spinning mirror assembly gives line scan
 - Ranges vary (90, 180 degree, 50+m)
 - Scanning rates vary (e.g. 20Hz, 75Hz)
 - Resolutions (e.g. 0.25 degree, 10mm)
 - Accuracy ~30mm stdev in range

Spinning mirror

SICK LiDar Internals

• From http://web.mit.edu/kvogt/www/lidar.html

LiDar Variations

NREC Crusher Vehicle

Crusher with sensors

Colorized LiDar

Used a lot on NREC robots

http://www.aerotecusa.com/

InfraRed

- Emitter/detector pair
- Output type
 - Digital (strength of return threshold)
 - Analog range using triangulation
- Usually short-range (<1m)
- Can be sensitive to IR sources e.g. sun

Sharp IR Sensor

Proprioceptive Sensors

Optical Encoders

- Disc to measure *rotational* motion
- Out of phase IR emitter/detector pair

Optical Encoders

• Direction and amount of rotation from edge transitions

In Practice

- Electronic hardware (MCU or ASIC) provides counting, de-bouncing
- Estimate speed by sampling encoder counts
 Model to provide wheel speed from encoder counts
- How to get vehicle speeds from wheel speeds?
 This is kinematics! (Later in the course)

Gyroscopes

- Proprioceptive sensor
- Maintaining estimate of orientation
 - Mechanical devices
 - Fiber optic gyroscope
 - Vibrating gyroscope (e.g. MEMS)

What is Gyroscope?

Rotational Angular Velocity Sensor

Operation principle : An angular velocity sensor that works by using the phenomenon generated by Coriolis force when angular velocity is applied to a moving object in relation to velocity and orthogonal directions.

Accelerometers

- Measure acceleration in a direction of travel
 - Typically MEMS device
- Also measures gravity
 - Good old relativity...
 - Can use with gyroscopes to remove gravity component
- Typically very noisy
- Need to double integrate to get position

Accelerometers

Sensor acceleration, mid-term accel

Lecture: Sensors

Issues With Accelerometers/Gyros

- Noise
 - Output readings may have approximately additive Gaussian noise
- Drift
 - Signal drifts from true value over time Gyro heading
 - Usually need to integrate accelerometers

GPS/Glonas/Galileo

- Orbiting satellites
 - Known trajectories
 - Highly precise timers
- Transmit data in Ghz band
 - Ephemeris information
 - Develop pseudo range to satellite
- Solve for receiver position
- Can also solve for velocity

GPS Properties

- Many causes of error
 - Ionospheric effects, line of site clearance
 - Delays in satellite positional updates, multi-path
- Is it Gaussian?
 - Over hours, approximately Gaussian errors
 - Over short time, small error but strong bias
- Improvements
 - DGPS, WAAS (~3m accuracy at 3 sigma)
 - Use an INS (Accelerometers/gyros)

GPS/INS

- Commercial solutions exist (expensive!)
- Fuse integrated INS estimates with GPS
 A big custom Kalman filter (more later)

Summary

- Know about
 - A whole class of sensors
 - Typical problems with sensors, and sensor uncertainty
 - Basic approach to modeling a sensor
 - Basic filtering techniques