
Behaviors

Manuela Veloso

CMRoboBits, 15-491, Fall 2007

http://www.andrew.cmu.edu/course/15-491

Computer Science Department

Carnegie Mellon University



15-491 CMRoboBits

Behaviors as Functions

Domain of state space

(continuous or discrete)

Range of robot actions 

(including those of the team)

nX

X

X

M

2

1

ku

u

u

M

2

1

Define a function 

which triggers actions 

based on state…

…with the intention 

of ending up in a 

new desired state 



15-491 CMRoboBits

“Thinking”… Selecting Actions

� Sensory data as input

� “Behaviors” as processing of input to 
select actions

� Actuators perform the actions



15-491 CMRoboBits

Behaviors Approaches

There are three main approaches to behaviors

� Reactive 
� Try to respond directly to the environment

� Deliberative
� Think ahead about actions before deciding on one 
to execute (included Planning as special case)

� Hybrid
� Combination of the above



15-491 CMRoboBits

Reactive Behaviors

� Reactive behaviors map directly from sensors to 
actions
� No memory

� Advantages
� Very responsive to changes in environment

� Simple and easy to understand

� Smooth control changes in response to smooth 
changes in sensor values

� Disadvantages
� Can’t perform different actions from the same state

� Can get stuck

� Don’t scale well to complex tasks



15-491 CMRoboBits

Types of Reactive Behaviors

� Reactive behaviors come under a wide variety 
of names

� Regardless of the names, they typically 
behave in the same general way

� Reactive behaviors form the basic building 
block of most successful behavior system

� An example behavior system:

� Motor schemas



15-491 CMRoboBits

Motor Schemas

� A motor schema is a mapping from sensors to 
a force vector whose direction dictates the 
robot’s next motion

� Each motor schema calculates a force on the 
robot due to some constraint

� The force vectors are summed to get the 
total force on the robot

� Example: navigation in the presence of 
obstacles
� One motor schema produces force towards goal

� Second motor schema produces force away from 
obstacles



15-491 CMRoboBits

Motor Schemas

Robot

Obstacle

Robot

Robot
Goal

Goal vector

Avoidance vector

Resulting vector

1

2

3



15-491 CMRoboBits

Combining Reactive Behaviors

� Reactive behaviors don’t scale very well
� How to get a reactive system to carry out a 
conversation with you?

� Reactive behaviors need to be combined into 
a larger behavior system

� Some combination ideas include:
� Blending – motor schemas is an example of this

� Competition – behaviors compete for control

� Subsumption – reactive behaviors selectively take 
control

� Sequencing – reactive behaviors are executed in a 
sequence based on a higher-level controller



15-491 CMRoboBits

Blending

� Behaviors output an activation magnitude and 
direction

� Multiple behaviors have their activation 
values merged into a single unified value

� Easy to implement as long as sensor values 
can be described by “forces” with direction 
and magnitude

� Problem: equal but opposing forces can 
cancel each other out



15-491 CMRoboBits

Blending

Robot

Obstacle

Robot

Robot
Goal

Goal vector

Avoidance vector

Resulting vector

1

2

3



15-491 CMRoboBits

Competition

� Similar to blending, but uses “winner-take-all”
for activation

� Reactive behaviors compete for control of the 
robot

� Very responsive and adaptable to different 
behavior sets

� Problem: oscillations could occur when two 
behaviors have very similar strengths



15-491 CMRoboBits

Competition

Robot

Obstacle

Robot Robot

Goal

Goal vector

Avoidance vector

Robot
Robot

1

2

3

4

5



15-491 CMRoboBits

Subsumption

� Provide a strict priority ordering for the 
behaviors

� All behaviors read from sensors and 
output values to actuators

� Higher priority behaviors override the 
outputs from lower-level behaviors

� Better scalability due to strict ordering 
and notion of abstraction



15-491 CMRoboBits

Subsumption

Robot

Obstacle

Robot
Goal

Goal vector

Wall follow vector

Robot
Robot

1

2
3

4



15-491 CMRoboBits

Sequencing

� Run only a single reactive behavior at a time 
and switch the active behavior based on 
change in robot/environment state

� Convenient notation for sequencing the 
behavior is a finite state machine (FSM)

� Each state of the FSM has an associated 
reactive behavior

� Each transition of the FSM has a rule that 
must be satisfied before a transition can 
occur

� Approach used by CMRoboBits code



15-491 CMRoboBits

Behaviors as Finite State Machines 

Score Search

Approach

Recover
not see ball

next to ball

see ball not see ball

timeout

see ballnot next to ball



15-491 CMRoboBits

Behavior FSM Semantics

� Each behavior is a function which must return 
a value every time new sensor data is called

� Takes as input the sensor features and 
returns the actuator commands

� Inside the function is the FSM
� First, remember which state the FSM is in

� Do computations on persistent values
� Time in state, as an example

� Decide whether to exit the function or whether to 
transition to a new state

� Why shouldn’t the FSM make the transition state and 
then exit?



15-491 CMRoboBits

Sequencing Advantages

� Problems with oscillation are greatly 
reduced by the transition rules

� Can be very reactive to environment

� Can select different actions from same 
perceptions using context and memory

� Easy to chain together into larger 
actions



15-491 CMRoboBits

Hierarchy – Adding Scale

� In order to scale to large behaviors, we 
can reuse collections of lower-level 
behaviors

� Libraries of lower-level behaviors form the 
building blocks for all AIBO behaviors

� Each state of FSM can be either a single 
reactive behavior, or another FSM with 
its own behaviors (or FSMs)



15-491 CMRoboBits

Example of Behavior/FSM

ON GROUND

BEHAVIOR

LIFTED STRAIGHT

BEHAVIOR

TILTED

BEHAVIOR

AIBO lifted

AIBO back on ground

AIBO lifted

AIBO tilted

AIBO back 

on groundAIBO tilted

TROT RUNWALKSET LED-

MIDDLE-LEFT

SET LED-MIDDLE-

RIGHT

Tilted left Tilted right

Decompositional

Sequential



15-491 CMRoboBits

Implementation Details

� Behavior design is more of an art

� Good behaviors produce smoothly varying 
control signals

� Control signals that oscillate lead to poor 
control performance
� Control target changes before controller can 
achieve the previous target

� Oscillation in behaviors needs to be avoided 
because it will lead to oscillations in control 
signals



15-491 CMRoboBits

Problems of Oscillation

� Behavior design can feel like more of an art

� Good behaviors produce smoothly varying 
control signals

� Control signals that oscillate lead to poor 
control performance
� E.g. Control target changes before controller can 
achieve the previous target

� Oscillation in behaviors needs to be avoided 
because it will lead to oscillations in control 
signals



15-491 CMRoboBits

Oscillation

Robot Obstacle Goal

Goal vector

Avoidance vector

Robot1 2

Robot Obstacle Goal1



15-491 CMRoboBits

Avoiding Oscillation

� If oscillation occurs, one choice is to merge 
the states where the oscillation is occuring

� A more general solution is to add hysteresis
to the transition rules
� A system exhibits hysteresis when the behavior 
depends not only on the current state but also on 
its history

� This refers to the creation of a buffer zone 
between states

� Important for first sensors homework



15-491 CMRoboBits

Example: When to Invoke the 
Different Behaviors?

Robot Obstacle GoalRobot

1

2

Challenge: sensors are noisy , actuation can be noisy

Let’s collect some data from a robot driving 
towards and away from an obstacle.



15-491 CMRoboBits

Raw Data



15-491 CMRoboBits

Handling Uncertainty

� Sensory data is noisy

� How to decide between two conflicting 
sensor readings?

� One solution is thresholding

Question: is a single value a good solution?

T1



15-491 CMRoboBits

Naïve Control



15-491 CMRoboBits

Handling Uncertainty

� Two threshold method: hysteresis
� The lagging of an effect behind its cause

� The state switches from blue to red when 
values rise above T2. It switches from red to 
blue when values fall below T1.

T1 T2



15-491 CMRoboBits

Hysteresis



15-491 CMRoboBits

Behavior Design Principles

� Design behavior in stages
� Work on only one state at a time

� Start with initial “entry” state
� Continue with each successive state

� Test and debug one transition at a time

� Make one change at a time and 
thoroughly test the states and 
transitions



15-491 CMRoboBits

Behaviors: Working within the 
Perception/Cognition/Action Loop

� Sensors obtain data at a fast rate

� One pass through the loop should not 
slow this processing down

� Too much time in cognition might cause 
data data be missed or lost

� Computation cannot take “too much”

time…


