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Planning Algorithm

Glven:
= A goal;

= A description of available
actions;

1
ﬁﬁ

&

15-491 CMRoboBiIts



Planning and Execution

Given:

= A goal; &L
= A description of available i

actions;

Plan and execute:

= Follow a plan | ?

= When needed - replan
(e.g., ERRT)
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Planning Considering Uncertainty

Given: )

~ Ny
= A goal; | N4
= A description of available / j !
actions; /
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Output: —

= A contingency plan (an
action to take at every state)
., = a policy
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Policy Definition

= A policy tells the robot what to do In
every possible state;

= Reactive;
= Represented as a mapping:

T
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Planning Using Policies

Advantages:
=« Can handle uncertainty
=« Simple and easy

Disadvantages:
= Does not scale very well
= Same state - Same action
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Evaluating a Policy

= A simple grid-world | —
= Which policy Is better? >|—|—| |
= Policy 1 — |1 |—=1
= Policy 2 —|—|—| ]

| —>
Answer: Policy 1. d=dmdil
> ,
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Evaluating a Policy I

= What about this case?

s Actions:

= Up, Down, Left, Right, |y

¢

<

Jump (in the star-state)

= Jump succeeds with probability p
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Evaluating a Policy Il

= Which is the best policy?
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Policy 1 Policy 2

Answer: Depends on p and on how bad it is to fall
Into the lava.
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Evaluating a Policy IV

s Costs In each transition or state;
s For the star-state:

1 1 0

N I = Policy 1 (total cost): 4
SRS = Policy 2 (total cost): 13

1 1 1 1

A policy Is optimal If it minimizes total cost
for all initial states

15-491 CMRoboBiIts



Evaluating a Policy V

= For the star-state, p = 0.9

S B « Policy 1 (expected total
) ; cost): 4
——+—+ —T1— = Policy 2 (expected total
cost): 8

= For the star-state, p = 0.5
= Policy 1: 8
= Policy 2: 8
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Value of a Policy |

s An equivalent formulation:

0 0

1

0 0 0

0

0 0 -10

0

0 0 0

0

Va

= Assign rewards to
states;

= Neg. rewards =
Penalties

ue of a policy at state s =
Total reward for starting at s
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Value of a Policy I

= For a policy =,

“Probability” of
moving £ steps

/

VE(6) = Yo rH(s) |5 =

= What about uncertainty?

Vi(s) =E.

Zytr(st) | Sp =S
| t=0 _
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The Optimal Policy

= For the optimal policy, n°,

V'(s) = V7 (s)

= We can write

V" (s) = max

r(

s>+v*<s'>

Probability of

with action a

moving from sto s’

e
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The Value of an Action

= Invent Q-function: The value of action a
In state sis:

Q (s,a)=r(s) +7D_P,(s,s)V'(s)
= r(s)+y;Pa(s,s )m?xQ (s',b)
= Gives a recipe to compute «":

n (s) =argmaxQ (s,a)
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Example of a Q—function:

s J-function: Table with states as rows
and actions as columns.

1 1454 | 1454 | 15.3 | 1454 | 1454
2 14.54 15.3 6.79 1454 | 16.11

8 9 10 Lava -3.21 -3.21 7.15 5.30 -3.21
0 0 Y 4 16.29 | 17.15 | 18.05 | 6.79 | 17.15
7 11 5 1805 | 1805 | 19 | 17.15 | 18.05
0 0 Goal 20 20 20 | 19.05 | 20
1 2 3 4 5 6 7 13.97 | 15.30 | 1454 | 1454 | 1454
0 0 10 0 0 1
8 13.97 | 1454 | 147 | 13.97 | 13.97

9 14.7 14.7 | 15.48 | 13.97 14.7
10 15.48 | 16.29 | 15.48 14.7 15.48
11 15.48 | 17.15 | 16.29 | 16.29 | 16.29
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How to Compute Q°

= Dynamic Programming (DP) approach:
= Start with some Q,;
= Repeat

Qy.i(s,a) =r(s) + VZ P, (S,S')mgx Q. (s',b)

until |Q, 1 — Q|| small.
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DP Revisited

s Recall the DP iteration:

Qen(s,a) =r(s) + ’YZ P.(s,s")max Q,(s', b)

= Requires knowledge of P and r
= Iterates compute an expected value:

Qu.i(s,a) = E[r(s) T ymax Q. (s',b)
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Learning From Experience

= If P and rare unknown, expectation can
be approximated by experience;

= Consider, for example, the deterministic
case:

Er(s)+ym?ka(s',b) = r+ym?ka(s',b)
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Deterministic Q-learning

= We can replace
Qy.i(s,a) =r(s) + VZ P, (S,S')mglx Q. (s',b)
by s
Qua(s,a)=r+ Vmg’-x Q. (s',b)

= Can be used from samples (s, a, r, s’) to
perform DP
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Q-learning

= At iteration 4, the sample error Is:
Err, =r+ Y max Q. (s',b) —Q,(s,a)
= We update @, ., proportionally to the
error

Qia(s,0) = Q,(s,0) @l Tymax Qi (s',b) — Qi (s,a)

Step-size
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Remarks

= Q-learning is a reinforcement learning
algorithm;

= The robot learns from a reinforcement
signal (rewards/penalties);

= Requires exploration of the environment;
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Reinforcement Learning

= Advantages
= Requires no knowledge of the environment;
»« Can adapt to slowly changing environments;

= Disadvantages
= Requires exploration (may be dangerous);
= Does not handle rapidly changing domains;
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Outline

= Multi-robot Coordination
= Learning Coordination
s Conclusions
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What About Multiple Robots?

= Nalve approach: ignore others;
= Problem:

Robot 1

Robot 2
o o

Narrow doorway

Ignoring the other may
coal 2 coal 1 cause the robots to crash in
the doorway.
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DP for Multiple Robots

= “Optimal” solution: Jointly model the

whole team; -

State of robot 2

State of robot 1

Action of robot 2

= State: @
= Action: a2

Action of robot 1

= Reward: Common to all robots

= Joint policy - Policy for both robots;

15-491 CMRoboBits




The Need for Coordination

= Joint O~ enough for coordination?
= Centralized decisions/communication;
= Soclal conventions;
= Other coordination mechanism;

= Example: @ @
= One of the robots must walit;

« It Is unimportant which one;
= Both must agree which one;
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|Sssues:

= State-action space grows exponentially
with number of robots;

= Actions of one robot always depend on
the other robots;

= Requires each robot to know where all
robots are;
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Outline

= Learning Coordination
= Conclusions
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3 Simple ldeas |

= Ildea 1: Use single robot policies when
possible (decouple decisions)

= When possible, “ignore” other agents in the
environment

= State-action space grows linearly with
number of agents
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3 Simple ldeas I

= Ildea 1 (cont.)

= Most of the time, actions of each robot no
longer depend on the other robots;

= Most of the time, each robot no longer needs
to know where other robots are;
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3 Simple ldeas Il

= Ildea 2: Use communication to
coordinate with other robots (when
needed)

= Handle miscoordinations;
= Keep communication local (not global);
= Consider local interactions;
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3 Simple ldeas IV

s ldea 3: Learn when communication Is
necessary,

= No pre-defined interaction;

= Can be used in more general settings (non-
cooperative/adversarial interactions);
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Back to the Example

= Decouple robots decisions:

= Each robot has to reach
@ @ opposite corner,

= Simultaneous doorway
— crossing still penalized,;

Robots now coordinate only
near the door using
communication.

Goal 2 Goal 1
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Outline

= Conclusions
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Conclusions |

= Policies provide “reactive behaviors” and
handle uncertainty;

= 10 compute optimal policies, we can use
= Dynamic Programming (model is known)
= Reinforcement Learning (model is unknown)
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Conclusions |1

s Coordination Is a fundamental issue In multi-
robot domains

= Must be addressed explicitly:
= Centralized decisions/communication:;
= Social conventions;

= Decoupled decisions and communication can
diminish complexity of multi-robot domains
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What to Take Home

To handle uncertainty, robot relies on
contingency plans — policies

Compute optimal policies:

= Using DP (model known)

= Using RL (model unknown)

Coordination i1s fundamental in multi-robot
domains

Decoupled decisions and communication can
diminish complexity of multi-robot domains
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