CMRoboBits: *Policy Learning and Multi-robot Coordination*

Francisco Melo Manuela Veloso 15-491, Fall 2008 http://www.andrew.cmu.edu/course/15-491 Computer Science Department Carnegie Mellon

Outline

- Planning Under Uncertainty
- Learning
- Multi-robot Coordination
- Learning Coordination
- Conclusions

Planning Algorithm

Given:

- A goal;
- A description of available actions;

Output: A plan.

Planning and Execution

Given:

- A goal;
- A description of available actions;

Plan and execute:

- Follow a plan
- When needed replan (e.g., ERRT)

Planning Considering Uncertainty

Given:

- A goal;
- A description of available actions;

Output:

A contingency plan (an action to take at every state)
 = a policy

Policy Definition

- A policy tells the robot what to do in every possible state;
- Reactive;
- Represented as a mapping:

Planning Using Policies

Advantages:

- Can handle uncertainty
- Simple and easy

Disadvantages:

- Does not scale very well
- Same state \rightarrow Same action

Evaluating a Policy

- A simple grid-world
- Which policy is better?
 - Policy 1
 - Policy 2

Answer: Policy 1.

Evaluating a Policy II

- What about this case?
- Actions:
 - Up, Down, Left, Right,
 Jump (in the star-state)

Jump succeeds with probability p

Evaluating a Policy III

Which is the best policy?

Answer: Depends on *p* and on how bad it is to fall into the lava.

Evaluating a Policy IV

- Costs in each transition or state;
- For the star-state:

- Policy 1 (total cost): 4
 Deliver 2 (total cost): 1
- Policy 2 (total cost): 13

A policy is optimal if it minimizes total cost for all initial states

Evaluating a Policy V

• For the star-state, p = 0.9

- Policy 1 (expected total cost): 4
- Policy 2 (expected total cost): 8

For the star-state, p = 0.5
Policy 1: 8
Policy 2: 8

Value of a Policy I

An equivalent formulation:

0		0	1
0	0	0	0
0	0	-10	0
0	0	0	0

- Assign rewards to states;
- Neg. rewards =
 Penalties

Value of a policy at state *s* = Total reward for starting at *s*

Value of a Policy II

The Optimal Policy

• For the optimal policy, π^* ,

 $V^*(s) \geq V^{\pi}(s)$

The Value of an Action

- Invent *Q*-function: The value of action *a* in state *s* is: $Q^*(s,a) = r(s) + \gamma \sum_{s'} \mathbf{P}_a(s,s') V^*(s')$ $= r(s) + \gamma \sum_{s'} \mathbf{P}_a(s,s') \max_b Q^*(s',b)$
- Gives a recipe to compute π^* : $\pi^*(s) = \arg \max_a Q^*(s, a)$

Example of a *Q*-function:

Q-function: Table with states as rows and actions as columns.

	8 0	9 0	10 0		
	7 0		11 0		
1 0	2 0	3 -10	4 O	5 0	6 1

	¢	P	Ē	-	\rightarrow
1	14.54	14.54	15.3	14.54	14.54
2	14.54	15.3	6.79	14.54	16.11
Lava	-3.21	-3.21	7.15	5.30	-3.21
4	16.29	17.15	18.05	6.79	17.15
5	18.05	18.05	19	17.15	18.05
Cool	20				
Goal	20	20	20	19.05	20
G0ai 7	20 13.97	20 15.30	20 14.54	19.05 14.54	20 14.54
7 8	20 13.97 13.97	20 15.30 14.54	20 14.54 14.7	19.05 14.54 13.97	20 14.54 13.97
7 8 9	20 13.97 13.97 14.7	20 15.30 14.54 14.7	20 14.54 14.7 15.48	19.05 14.54 13.97 13.97	20 14.54 13.97 14.7
7 8 9 10	20 13.97 13.97 14.7 15.48	20 15.30 14.54 14.7 16.29	20 14.54 14.7 15.48	19.05 14.54 13.97 13.97 14.7	20 14.54 13.97 14.7 15.48

How to Compute Q^*

- Dynamic Programming (DP) approach:
 - Start with some Q_0 ;

Repeat

$$Q_{k+1}(s,a) = r(s) + \gamma \sum_{s'} \mathbf{P}_a(s,s') \max_b Q_k(s',b)$$

until $||Q_{k+1} - Q_k||$ small.

Outline

Planning Under Uncertainty

Learning

- Multi-robot Coordination
- Learning Coordination
- Conclusions

DP Revisited

Recall the DP iteration:

$$Q_{k+1}(s,a) = r(s) + \gamma \sum_{s'} \mathbf{P}_a(s,s') \max_b Q_k(s',b)$$

- Requires knowledge of P and r
- Iterates compute an expected value:

$$Q_{k+1}(s,a) = \mathbf{E}\left[r(s) + \gamma \max_{b} Q_{k}(s',b)\right]$$

Learning From Experience

- If P and r are unknown, expectation can be approximated by experience;
- Consider, for example, the deterministic case:

$$\mathbf{E}\left[r(s) + \gamma \max_{b} Q_{k}(s', b)\right] = r + \gamma \max_{b} Q_{k}(s', b)$$

Deterministic *Q*-learning

• We can replace

$$Q_{k+l}(s,a) = r(s) + \gamma \sum_{s'} \mathbf{P}_a(s,s') \max_b Q_k(s',b)$$
by

$$Q_{k+l}(s,a) = r + \gamma \max_{b} Q_k(s',b)$$

Can be used from samples (s, a, r, s') to perform DP

Q-learning

- At iteration k, the sample error is:
- $Err_{k} = r + \gamma \max_{b} Q_{k}(s',b) Q_{k}(s,a)$ We update Q_{k+1} proportionally to the error $Q_{k+1}(s,a) = Q_{k}(s,a) + \alpha \left[r + \gamma \max_{b} Q_{k}(s',b) Q_{k}(s,a)\right]$

Step-size

Remarks

- *Q*-learning is a reinforcement learning algorithm;
- The robot learns from a reinforcement signal (rewards/penalties);
- Requires exploration of the environment;

Reinforcement Learning

Advantages

- Requires no knowledge of the environment;
- Can adapt to slowly changing environments;
- Disadvantages
 - Requires exploration (may be dangerous);
 - Does not handle rapidly changing domains;

Outline

- Planning Under Uncertainty
- Learning

Multi-robot Coordination

- Learning Coordination
- Conclusions

What About Multiple Robots?

- Naïve approach: ignore others;
- Problem:

Narrow doorway

Ignoring the other may cause the robots to crash in the doorway.

DP for Multiple Robots

- "Optimal" solution: Jointly model the whole team;
 State of robot 2
 - State: (s₁, s₂)
 - Action: (a_1, a_2)
 - Reward: Common to all robots

Action of robot 2

Action of robot 1

• Joint policy \rightarrow Policy for both robots;

The Need for Coordination

Joint Q^{*} enough for coordination?

- Centralized decisions/communication;
- Social conventions;
- Other coordination mechanism;
- Example:
 - One of the robots must wait;
 - It is unimportant which one;
 - Both must agree which one;

Issues:

- State-action space grows exponentially with number of robots;
- Actions of one robot always depend on the other robots;
- Requires each robot to know where all robots are;

Outline

- Planning Under Uncertainty
- Learning
- Multi-robot Coordination
- Learning Coordination
- Conclusions

3 Simple Ideas I

- Idea 1: Use single robot policies when possible (decouple decisions)
 - When possible, "ignore" other agents in the environment
 - State-action space grows linearly with number of agents

3 Simple Ideas II

Idea 1 (cont.)

- Most of the time, actions of each robot no longer depend on the other robots;
- Most of the time, each robot no longer needs to know where other robots are;

3 Simple Ideas III

- Idea 2: Use communication to coordinate with other robots (when needed)
 - Handle miscoordinations;
 - Keep communication local (not global);
 - Consider local interactions;

3 Simple Ideas IV

- Idea 3: Learn when communication is necessary;
 - No pre-defined interaction;
 - Can be used in more general settings (noncooperative/adversarial interactions);

Back to the Example

Decouple robots decisions:

Goal 2		Goal 1

- Each robot has to reach opposite corner;
- Simultaneous doorway crossing still penalized;

Robots now coordinate only near the door using communication.

Outline

- Planning Under Uncertainty
- Learning
- Multi-robot Coordination
- Learning Coordination
- Conclusions

Conclusions I

- Policies provide "reactive behaviors" and handle uncertainty;
- To compute optimal policies, we can use
 - Dynamic Programming (model is known)
 - Reinforcement Learning (model is unknown)

Conclusions II

- Coordination is a fundamental issue in multirobot domains
- Must be addressed explicitly:
 - Centralized decisions/communication;
 - Social conventions;
 - **—** ...
- Decoupled decisions and communication can diminish complexity of multi-robot domains

What to Take Home

- To handle uncertainty, robot relies on contingency plans policies
- Compute optimal policies:
 - Using DP (model known)
 - Using RL (model unknown)
- Coordination is fundamental in multi-robot domains
- Decoupled decisions and communication can diminish complexity of multi-robot domains

