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Planning Algorithm

Given:
A goal;
A description of available 
actions;

Output:
A plan.
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Planning and Execution

Given:
A goal;
A description of available 
actions;

Plan and execute:
Follow a plan
When needed – replan 
(e.g., ERRT)
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Planning Considering Uncertainty

Given:
A goal;
A description of available 
actions;

Output:
A contingency plan (an 
action to take at every state)
= a policy
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Policy Definition

A policy tells the robot what to do in 
every possible state;
Reactive;
Represented as a mapping:

States Actions

π
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Planning Using Policies

Advantages:
Can handle uncertainty
Simple and easy

Disadvantages:
Does not scale very well
Same state Same action
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Evaluating a Policy 

A simple grid-world
Which policy is better?

Policy 1
Policy 2

GoalObst.

Answer: Policy 1.
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Evaluating a Policy II

What about this case?
Actions:

Up, Down, Left, Right, 
Jump (in the star-state)
Jump succeeds with probability p

Goal
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Evaluating a Policy III

Which is the best policy?

Policy 2

Answer: Depends on p and on how bad it is to fall 
into the lava.

Policy 1

J
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Evaluating a Policy IV

Costs in each transition or state;
For the star-state:

Policy 1 (total cost): 4
Policy 2 (total cost): 13

A policy is optimal if it minimizes total cost 
for all initial states
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Evaluating a Policy V

For the star-state, p = 0.9
Policy 1 (expected total 
cost): 4
Policy 2 (expected total 
cost): 8

For the star-state, p = 0.5
Policy 1: 8
Policy 2: 8 
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Value of a Policy I

An equivalent formulation:

Assign rewards to 
states;
Neg. rewards = 
Penalties

Value of a policy at state s = 
Total reward for starting at s
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Value of a Policy II

For a policy π,

What about uncertainty?
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The Optimal Policy

For the optimal policy, π*,

We can write
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The Value of an Action

Invent Q -function: The value of action a
in state s is:

Gives a recipe to compute π*:
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Example of a Q –function:

Q -function: Table with states as rows 
and actions as columns.

1 14.54 14.54 15.3 14.54 14.54

2 14.54 15.3 6.79 14.54 16.11

Lava -3.21 -3.21 7.15 5.30 -3.21

4 16.29 17.15 18.05 6.79 17.15

5 18.05 18.05 19 17.15 18.05

Goal 20 20 20 19.05 20

7 13.97 15.30 14.54 14.54 14.54

8 13.97 14.54 14.7 13.97 13.97

9 14.7 14.7 15.48 13.97 14.7

10 15.48 16.29 15.48 14.7 15.48

11 15.48 17.15 16.29 16.29 16.29
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How to Compute Q *

Dynamic Programming (DP) approach:
Start with some Q 0;
Repeat

until ||Qk +1 – Qk ||
 

small.
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DP Revisited

Recall the DP iteration:

Requires knowledge of P and r
Iterates compute an expected value:

∑γ+=+
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Learning From Experience

If P and r are unknown, expectation can 
be approximated by experience;
Consider, for example, the deterministic
case: 

[ ] ),'(max),'(max)( bsQrbsQsr kbkb
γ+=γ+E
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Deterministic Q -learning

We can replace

by

Can be used from samples (s, a, r, s’) to 
perform DP
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Q -learning

At iteration k, the sample error is:

We update Qk +1 proportionally to the 
error

),(),'(max asQbsQrErr kkbk −γ+=

[ ]),(),'(max),(),(1 asQbsQrasQasQ kkbkk −γ+α+=+

Step-size
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Remarks

Q -learning is a reinforcement learning 
algorithm;
The robot learns from a reinforcement 
signal (rewards/penalties);
Requires exploration of the environment;
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Reinforcement Learning

Advantages
Requires no knowledge of the environment;
Can adapt to slowly changing environments;

Disadvantages
Requires exploration (may be dangerous);
Does not handle rapidly changing domains;
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What About Multiple Robots?

Naïve approach: ignore others;
Problem:

Ignoring the other may 
cause the robots to crash in 

the doorway.

Robot 1 Robot 2

Goal 2 Goal 1

Narrow doorway
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DP for Multiple Robots

“Optimal” solution: Jointly model the 
whole team;

State: (s1, s2)
Action: (a1, a2)
Reward: Common to all robots

Joint policy Policy for both robots;

State of robot 1

State of robot 2

Action of robot 1

Action of robot 2
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The Need for Coordination

Joint Q * enough for coordination?
Centralized decisions/communication;
Social conventions;
Other coordination mechanism;

Example:
One of the robots must wait;
It is unimportant which one;
Both must agree which one;

Goal 2 Goal 1
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Issues:

State-action space grows exponentially 
with number of robots;
Actions of one robot always depend on 
the other robots;
Requires each robot to know where all 
robots are;
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3 Simple Ideas I

Idea 1: Use single robot policies when 
possible (decouple decisions)

When possible, “ignore” other agents in the 
environment
State-action space grows linearly with 
number of agents
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3 Simple Ideas II

Idea 1 (cont.)
Most of the time, actions of each robot no 
longer depend on the other robots;
Most of the time, each robot no longer needs 
to know where other robots are;
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3 Simple Ideas III

Idea 2: Use communication to 
coordinate with other robots (when 
needed)

Handle miscoordinations;
Keep communication local (not global);
Consider local interactions;
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3 Simple Ideas IV

Idea 3: Learn when communication is 
necessary;

No pre-defined interaction;
Can be used in more general settings (non-
cooperative/adversarial interactions);
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Back to the Example

Decouple robots decisions:
Each robot has to reach 
opposite corner;
Simultaneous doorway 
crossing still penalized;

Goal 2 Goal 1
Robots now coordinate only 

near the door using 
communication.
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Conclusions I

Policies provide “reactive behaviors” and 
handle uncertainty;
To compute optimal policies, we can use

Dynamic Programming (model is known)
Reinforcement Learning (model is unknown)
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Conclusions II
Coordination is a fundamental issue in multi-
robot domains
Must be addressed explicitly:

Centralized decisions/communication;
Social conventions;
...

Decoupled decisions and communication can 
diminish complexity of multi-robot domains
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What to Take Home
To handle uncertainty, robot relies on 
contingency plans – policies
Compute optimal policies:

Using DP (model known)
Using RL (model unknown)

Coordination is fundamental in multi-robot 
domains
Decoupled decisions and communication can 
diminish complexity of multi-robot domains
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