Learning II 15-491 CMRoboBits

Manuela Veloso And Brett Browning

Fall 2007

All images contained herein are either from the instructor(s) own work or publicly available on the web.

Outline

- Project advice
- Recap on learning
- Experts-based learning approaches

Project Advice

- Start early, work consistently
- Set short-term goals
 - Phases are there to help you
 - Evaluate and reassess at each milestone
- Take a cyclic approach: test often!
- Backup your work
- Write as you go

Learning Recap

- Supervised learning
 - Given sample set of (x,y), estimate y=f(x)
 - Calibration, prediction, learning by demonstration
 - Classification, ...
- Unsupervised learning
 - Given sample set of x, learn projection y=f(x)
 - Dimensionality reduction (PCA), clustering
- Semi-supervised learning
 - In-between, e.g. Reinforcement learning

Reinforcement Learning

- Agent acts in the world, and receives rewards
- Credit assignment problem

15-491: Lecture 6, Vision 2

RL and **Robotics**

- Good for learning robotics control problems
- Algorithms
 - Q-learning, SARSA-learning, TD-lambda
 - Policy iteration, value iteration
- Sounds great, ...but... algorithms don't scale
 - High dimensionality
 - Continuous state/action spaces
 - Non-deterministic execution
 - Even worse for multiple agents

RL Examples

- Not all bad news
- Some examples
 - Restricted policy RL* and Pegasus
 - Gra-Wolf
- Still a very active research area!!!

Learning Helicopter Control

• Ng, Bagnell, et al.

Multi-Robot Learning

• Bowling et al.

Learning in State Machines

• State machines provide task decomposition

- Three key learning problems
 - Control policy learning in a state: RL, LbD
 - Learning transition policy (and sub-skills)
- Learning the hierarchy: (e.g. Options, hierarchical RL) Fall 2007 15-491: Lecture 6, Vision 2

Learning Transitions

- Can be a hard problem
 - Continuous state/action space
 - Partial observability
 - Data collection can be hard
- Let's look at a simpler problem: Selection

State Machine Selection

- Given a set of state machines (complex actions)
 - A1, A2, ..., Ak
 - k should be small (< 10)
- Learn to select which one to use
 - Note, we are avoiding representing state, and are explicitly handling discrete actions
- How can we do this?

Experts Learning

- Let's go to the casino
- K-armed bandits problem

Choose a bandit at time t Observe reward(s) r Want to maximize our reward or minimize loss (regret)

More Formally...

- Each expert is a "one-armed-bandit"
- At time t
 - Select expert to use: Ai
 - Observe payoffs: r
 - Based on payoffs, update how we select experts in the future

Observing Payoffs

- Suppose you can observe all of the payoffs
 Full observability
- Want to minimize regret

$$r_A - max_i r_i, r_i = \sum_t r_i^t$$

- rA is algorithm reward
- Note, different formulations are possible

Simple Algorithm

- Stochastic policy, choose actions randomly
- Initialize weights w (e.g. w=0)
- Choose action according to

$$p_i = \frac{e^{w_i}}{\sum_i e^{w_i}}$$

• Update based on payoffs

$$w'_i = w_i + r_i$$

Partial Observability

- Generally can't see all the payoffs
- Exp3 Approach [Fruend & Schapire]
 Select single action as before

$$p_i = \frac{e^{w_i}}{\sum_i e^{w_i}}$$

- Observe reward r for action j, update

$$x_i = \frac{r_i}{p_i}, r_i = 0, if i \neq j$$

 $w'_i = w_i e^{x_i \alpha}$

Applying it to Robots

- At skill level
 - Have multiple state machines to do a task
 - Use Exp3 to select which state machine to execute
 - Rewards from success/failure
- At play level
 - Have multiple plays to do a task
 - Use Exp3 to select which play to execute
 - Rewards from success/failure

Learning Skill Selection

Skill Selection Learning

Probability of Choosing Expert

Argall et al.

Learning Play Selection Play Manager **Experts** Play 1 Play K Play 2

Not all plays are available at each time step

Play Selection Attacking play weight during game 2.5 2.5 Play 1 Play 2 Play 3 Play 4 P

15-491: Lecture 6, Vision 2

Learning by Demonstration

- Agent acts in the world, and receives rewards
- Teacher provides advice/demonstrations to agent

15-491: Lecture 6, Vision 2

Demonstration

• Example motions provided by a human operator via tele-operation (or observation)

Execution

• Generalize from example traces to estimate teacher's control policy

As a Regression Problem

- Teacher provides examples via demonstration
 - (x0,y0), ...(xN, yN)
- Mapping problem
 - Translate teacher's representation into robot's perception and action space:
 - -z=H(x), a=G(y)
- Regression problem
 - Learn a model for a=f(z)
 - f(.) is the control policy

Providing Advice

- Performance driven by data properties, representation and regression algorithm
- Can provide post-demonstration advice to *refine* control policy
- Advice method is an open research problem
- One example
 - Binary critique: label execution portions as good or bad

Advice with Binary Critiquing

Regression Technique : $1 - NNa^t = argmin_i D(z^t, z_i, m_i)$

Incorporating Advice

Scaling factor update :

$$m_{i} \leftarrow \begin{cases} m_{i} + \kappa \cdot [D(z^{t}, z_{i}, m_{i})]^{-1}, & \text{if } g = 0 \\ m_{i}, & \text{if } g = 1 \end{cases}$$

Task Example

Advice Round

^{15-491:} Lecture 6, Vision 2

Questions?