Multi-Robot Coordination 15-491 CMRoboBits

Manuela Veloso And Brett Browning

Fall 2007

Coordination

- The problem:
 - How do we make two or more robots work together to execute a task?
- We want to execute the task better than if robots do not coordinate

Coordination Approaches

Fully Centralized

Fully Distributed

- optimal
- intractable
- brittle
- sluggish
- communication heavy

- suboptimal
- tractable
- robust
- nimble
- communication light

Hybrid Approaches

- suboptimal (but better than distributed)
- tractable
- robust
- can be nimble
- communication medium

Hybrid Approaches

- suboptimal (but better than distributed)
- tractable
- robust
- can be nimble
- communication medium

Today's Topics

- Role assignment
- Distributed Plays
- Combining distributed plays with role assignment

Role Assignment

- Fundamental problem
- Key idea:
 - Given N robots
 - Given M tasks
 - How to assign the M tasks to the N robots?

Utility Matrix Formulation

- Operations Research
- Uij: utility of assigning task j to robot i
- Utility is an objective function

$$U = \begin{pmatrix} U_{1,1} & U_{1,2} & \dots & U_{1,M} \\ \dots & \dots & \dots & \dots \\ U_{N,1} & U_{N,2} & \dots & U_{N,M} \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

Utility Matrix

Assignment Matrix

Maximize

$$V = \sum \sum A_{i,j} U_{i,j} = \sum_{A_{i,j}=1} U_{i,j}$$

Maximizing Assigned Utility

- Key assumption
 - Maximizing individual utility maximizes overall utility (generally true, but not always)
- Optimal solutions exist
 - e.g. Hungarian Algorithm
- ...but, optimal solutions are worst case exponential
- Optimal solutions also assume a centralized model => we know everything!

Common Scenario

2 robots and 2 tasks

R1

Common Scenario

Example: Fully Centralized

- One robot in the team is the leader
- Leader produces optimal task allocation
- Centralized planner uses an exhaustive Depth First Search with some pruning

Example: Fully Distributed

- Each robot plans and executes actions independently
- All robots plan for ALL INCOMPLETE tasks (robust)
- All robots announce task completions
- Robots use same Depth First Search as in Centralized approach to optimize schedules

Fully Distributed Approach

Fully Distributed Approach

Fully Distributed Approach

Example: Hybrid Market Approach

- Market based approaches have provided a good compromise
 - Dynamic centralized approach
- Key idea
 - OpTrader agent trades on behalf of operator
 - Robots estimate costs and make bids on tasks
 - OpTrader does initial assignment based on bids (greedy algorithm or otherwise)
 - Robots execute assignments and can re-trade as they execute
- Many key contributors: see reading for details

Market Approach 2 robots and 2 tasks

Market Approach 2 robots and 2 tasks

Market Approach 2 robots and 2 tasks

Market Approach 2 robots and 2 tasks

T1
Reports to OpTrader T1 Complete!

Reports to OpTrader T2 Complete!

Comparison of Approaches

 \mathbf{n}

as

k

TraderBots

- DOW
- Robots are organized as an economy
- Team mission is to maximize production and minimize costs
- Robots exchange money for tasks to maximize individual profit

 System is designed to align local and global profit maximization

Trader Interaction

Overall Performance

Complex Tasks?

- Complex tasks can require robots to coordinate while executing the task
 - Task allocation does not solve the problem!
- How do we coordinate robot execution?
 - e.g. carrying a ladder, passing in soccer
- We saw last time that plays (team plans) provide a way to coordinate actions
- How do we incorporate plays into a hybrid framework?
 - We can exploit the dynamic centralized approach

Plays Recap

 For a single role, we can write a program for executing a task

Plays Recap

• For a multiple roles, we can *couple* the execution of the programs

Plays Recap

 Applicability: Conditional execution of a play for a given world state

Distributed Plays

Key ideas

- Role programs execute on assigned robot
- Only minimal coupling is required
- Play execution needs to be monitored

Key challenges

- How to assign roles?
- How to select plays?

Distributed Plays

 Only communicate when synchronization is required, otherwise run independently

Distributed Plays

• Dynamic centralized agent monitors execution

Market-based Role Assignment

Dynamic centralized agent monitors execution

Boeing TreasureHunt

Task Allocation

Task Allocation between Sub-Teams and Role Allocation within Sub-Teams

Tight Coordination

Team Action Coordination within Sub-Teams for Task Execution

Search for Treasure

• Human: Overseas search for treasure

• Pioneer: Uses maps to plan coverage

Segway: Uses camera to follow pioneer while searching

Pickup Teams...

Questions?