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Abstract

Mobile robots often find themselves in a situation
where they must find a trajectory to another po-
sition in their environment, subject to constraints
posed by obstacles and the capabilities of the robot
itself. This is the problem of planning a path through
a continuous domain, for which several approaches
have been developed. Each has some limitations how-
ever, including requiring state discretizations, steep
efficiency vs. accuracy tradeoffs, or the difficulty
of adding interleaved execution. Rapidly-Exploring
Random Trees (RRTs) are a recently developed rep-
resentation on which fast continuous domain path
planners can be based. In this work, we build a path
planning system based on RRTs that interleaves plan-
ning and execution, first evaluating it in simulation
and then applying it to physical robots. Our planning
algorithm, ERRT (execution extended RRT), intro-
duces two novel extensions of previous RRT work,
the waypoint cache and adaptive cost penalty search,
which improve replanning efficiency and the quality
of generated paths. ERRT is successfully applied to
a real-time multi-robot system. Results demonstrate
that ERRT is significantly more efficient for replan-
ning than a basic RRT planner, performing competi-
tively with or better than existing heuristic and reac-
tive real-time path planning approaches. ERRT is a
significant step forward with the potential for making
path planning common on real robots, even in chal-
lenging continuous, highly dynamic domains.

Introduction

The path-planning problem is as old as mobile
robots, but is not one that has found a universal
solution. Specifically, in complicated, fast evolving
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environments such as RoboCup [3], currently popu-
lar approaches to path-planning have their strengths,
but still leave much to be desired. In particular, most
require a state discretization and are best suited for
domains with relaxed time constraints for planning.
One of the relatively recently developed tools that
may help tackle the problem of real-time path plan-
ning are Rapidly-exploring random trees (RRTs) [7].
RRTs employ randomization to explore large state
spaces efficiently, and can form the basis for a prob-
abilistically complete though non-optimal kinody-
namic path planner [8]. Their strengths are that
they can efficiently find plans in high dimensional
spaces because they avoid the state explosion that
discretization faces. Furthermore, due to their incre-
mental nature, they can maintain complicated kine-
matic constraints if necessary. A basic planning al-
gorithm using RRTs is as follows: Start with a trivial
tree consisting only of the initial configuration. Then
iterate: With probability p, find the nearest point in
the current tree and extend it toward the goal g. Ex-
tending means adding a new point to the tree that
extends from a point in the tree toward g while main-
taining whatever kinematic constraints exist. In the
other branch, with probability 1 − p, pick a point
x uniformly from the configuration space, find the
nearest point in the current tree, and extend it to-
ward x. Thus the tree is built up with a combination
of random exploration and biased motion towards
the goal configuration.

Most current robot systems that have been devel-
oped to date are controlled by heuristic or poten-
tial field methods at the lowest level, and many ex-
tend this upward to the level of path navigation [5].
Since the time to respond must be bounded, reactive
methods are used to build constant or bounded time
heuristics for making progress toward the goal. One
set of reactive methods that have proved quite pop-
ular are potential fields and motor schemas [1]. Al-
though they meet the need for action under time con-



straints, these methods suffer from the lack of looka-
head, which can lead to highly non-optimal paths
and problems with oscillation. This is commonly ac-
cepted, and dealt with at a higher layer of the sys-
tem that detects failure or a local minimum and tries
to break out of it. RRTs, as used in our work and
presented in this paper, should provide a good com-
pliment for very simple control heuristics, and take
much of the complexity out of composing them to
form a navigation system. Specifically, local minima
can be reduced substantially through lookahead, and
rare cases need not be enumerated since the planner
has a nonzero probability of finding a solution on
its own through search. Furthermore, an RRT sys-
tem can be fast enough to satisfy the tight timing
requirements needed for fast navigation.

While not as popular as heuristic methods, non-
reactive planning methods for interleaved planning
and execution have been developed, with some
promising results. Among these are agent-centered
A* search methods [4] and the D* variant of A*
search [9]. However, using these planners requires
discretization or tiling of the world in order to oper-
ate in continuous domains. This leads to a tradeoff
between a higher resolution, with is higher memory
and time requirements, and a low resolution with
non-optimality due to discretization. Most of the fea-
tures of agent-centered search methods do not rely
on A* as a basis, however, so we can achieve many of
their benefits using an RRT based planner which fits
more naturally into domains with continuous state
spaces. The RRT planner we developed is roughly
competitive with these other methods in that both
can meet tight timing requirements and can reuse
information from previous plans, but at this point
it does not perform significantly better either. Its
strength instead lies mainly as a proof of concept,
since the base RRT system is relatively easy to ex-
tend to environments with moving obstacles, higher
dimensional state spaces, and kinematic constraints.
The primary goal of our work was thus to demon-
strate the feasibility of an RRT-based algorithm on
a real robot planning at real-time rates. This work
appears to be the first successful application of an
RRT planner to a real mobile robot [6].

In order to make online planning efficient enough
to be practical, two novel additions to the plan-
ning algorithm are introduced, specifically the way-
point cache for replanning and adaptive cost penalty
search. The second section of this paper defines
the basic RRT algorithm. The next section intro-
duces our ERRT contribution. We then describe
the implementations for simulated and real robot do-
mains. Specifically, ERRT is applied to a multi-robot
domain with small, fast moving, remote computer-

controlled robots with a single overhead camera pro-
viding global sensing. Plans are reconstructed 30
times a second, because in a continuous domain,
failure is constant due to deviations of the real sys-
tem from its model. Finally, the last section offers
concluding remarks and some lessons learned about
working with RRT planners.

RRT Planning

Basic RRT Algorithm

In essence, an RRT planner searches for a path from
an initial state to a goal state by expanding a search
tree. For its search, it requires the following three
domain-specific function primitives:

Function Extend (env:environment,current:state,
target:state):state

Function Distance (current:state,target:state):real
Function RandomState ():state

First, the Extend function calculates a new state that
can be reached from the target state by some in-
cremental distance (usually a constant distance or
time), which in general makes progress toward the
goal. If a collision with an obstacle in the environ-
ment would occur by moving to that new state, then
a default value, EmptyState, of type state is returned
to capture the fact that there is no “successor” state
due to the obstacle. In general, any heuristic meth-
ods suitable for control of the robot can be used here,
provided there is a reasonably accurate model of the
results of performing its actions. The heuristic does
not need to be very complicated, and does not even
need to avoid obstacles (just detect when a state
would hit them). However, the better the heuristic,
the fewer nodes the planner will need to expand on
average, since it will not need to rely as much on ran-
dom exploration. Next, the function Distance needs
to provide an estimate of the time or distance (or
any other objective that the algorithm is trying to
minimize) that estimates how long repeated applica-
tion of Extend would take to reach the goal. Finally,
RandomState returns a state drawn uniformly from
the state space of the environment.

For a simple example, a holonomic point robot with
no acceleration constraints can implement Extend
simply as a step along the line from the current state
to the target, and Distance as the Euclidean distance
between the two states. Table 1 shows the complete
basic RRT planner with its stochastic decision be-
tween the search options:

• with probability p, it expands towards the goal
minimizing the objective function Distance,



• with probability 1 − p, it does random explo-
ration by generating a RandomState.

function RRTPlan (env:environment,initial:state,
goal:state):rrt-tree

var nearest,extended,target:state;
var tree:rrt-tree;
nearest := initial;
rrt-tree := initial;
while(Distance (nearest,goal) < threshold)

target = ChooseTarget (goal);
nearest = Nearest (tree,target);
extended = Extend (env,nearest,target);
if extended 6= EmptyState then

AddNode (tree,extended);
return tree;

function ChooseTarget (goal:state):state
var p:real;
p = UniformRandom in [0.0 .. 1.0];
if 0 < p < GoalProb then

return goal;
else if GoalProb < p < 1 then

return RandomState();

function Nearest (tree:rrt-tree,target:state):state
var nearest:state;
nearest := EmptyState;
foreach state s in current-tree

if Distance (s,target) <
Distance (nearest,target) then

nearest := s;
return nearest;

Table 1: The basic RRT planner stochastically ex-
pands its search tree to the goal or to a random state.

The function Nearest uses the distance function im-
plemented for the domain to find the nearest point in
the tree to some target point outside of it. Choose-
Target chooses the goal part of the time as a directed
search, and otherwise chooses a target taken uni-
formly from the domain as an exploration step. Fi-
nally, the main planning procedure uses these func-
tions to iteratively pick a stochastic target and grow
the nearest part of the tree towards that target. The
algorithm terminates when a threshold distance to
the goal has been reached, though it is also common
to limit the total number of nodes that can be ex-
panded to bound execution time.

Extended RRT Algorithm - ERRT

Some optimizations over the basic described in exist-
ing work are bidirectional search to speed planning,
and encoding the tree’s points in an efficient spatial
data structure [2]. In this work, a KD-tree was used
to speed nearest neighbor lookup, but bidirectional

search was not used because it decreases the gener-
ality of the goal state specification (it must then be
a specific state, and not a region of states). Addi-
tional possible optimizations include a more general
biased distribution, which was explored in this work
in the form of a waypoint cache. If a plan was found
in a previous iteration, it is likely to yield insights
into how a plan might be found at a later time when
planning again; The world has changed but usually
not by much, so the history from previous plans can
be a guide. The waypoint cache was implemented
by keeping a constant size array of states, and when-
ever a plan was found, all the states in the plan were
placed into the cache with random replacement. This
stores the knowledge of where a plan might again be
found in the near future. To take advantage of this
for planning, Table 2 shows the modifications to the
function ChooseTarget.

function ChooseTarget’(goal:state):state
var p:real;
var i:integer;
p = UniformRandom in [0.0 .. 1.0];
i = UniformRandom in [0 .. NumWayPoints-1];
if 0 < p < GoalProb then

return goal;
else if GoalProb < p < GoalProb+WayPointProb
then

return WayPointCache[i];
else if GoalProb+WayPointProb < p < 1 then

return RandomState();

Table 2: The extended RRT planner stochastically
expands its search tree to the goal; to a random state;
or to a waypoint cache.

With ERRT, there are now three probabilities in
the distribution of target states. With probability
P [goal], the goal is chosen as the target; With prob-
ability P [waypoint], a random waypoint is chosen,
and with the remaining probability a uniform state
is chosen as before. The way the extended algo-
rithm progresses is illustrated in Figure 1. Typi-
cal values used in this work were P [goal] = 0.1 and
P [waypoint] = 0.6. Another extension was adaptive
beta search, where the planner adaptively modified
a parameter to help it find shorted paths. A simple
RRT planner is building a greedy approximation to
a minimum spanning tree, and does not care about
the path lengths from the initial state (the root node
in the tree). The distance metric can be modified to
include not only the distance from the tree to a tar-
get state, but also the distance from the root of the
tree, multiplied by some gain value. A higher value
of this gain value (beta) results in shorter paths from
the root to the leaves, but also decreases the amount
of exploration of the state space, biasing it to near
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Figure 1: Extended RRT with a waypoint cache for efficient replanning.

the initial state in a “bushy” tree. A value of 1
for beta will always extend from the root node for
any Euclidean metric in a continuous domain, while
a value of 0 is equivalent to the original algorithm.
The best value seems to vary with domain and even
problem instance, and appears to be a steep tradeoff
between finding an shorter plan and not finding one
at all. However, with biased replanning, an adaptive
mechanism can be used instead that seems to work
quite well. When the planner starts, beta is set to 0.
Then on successive replans, if the previous run found
a plan, beta is incremented, and decremented other-
wise. In addition the value is clipped to between 0
and 0.65. This adaptive bias schedule reflects the
idea that a bad plan is better than no plan initially,
and once a plan is in the cache and search is biased
toward the waypoints, nudges the system to try to
shorten the plan helping to improve it over successive
runs.

Domain Implementations and Results

Simulation

Figure 2: An example from the simulation-based RRT

planner, shown at two times during a run. The tree grows

from the initial state. The best plan is shown in bold, and

cached waypoints are shown as small black dots.

For previous work, we had developed an RRT simu-
lation program. For this work, to test strategies for
interleaved execution and learning, it was extended
to not only plan but also move the initial state a step

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

plan

tim
e 

(m
s)

No waypoints
Waypoints
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along the plan at each iteration. An example run can
be seen in figure 2. For a RoboCup like domain with
10 other obstacles, we found that expanding a con-
stant number of nodes (N=500) and 50 waypoints
worked fairly well, and would normally run in 20ms
or less. The step size of the extensions was 8cm (the
world is 320cm by 240cm). The goal was used as a
target with P [goal] = 0.1 and the waypoints were
used with P [waypoint] = 0.4. The adaptive beta
parameter was turned off in the final version, since
waypoints appear to achieve most of the benefits of
beta search without increasing the search time, al-
though in future work we’d like to explore the re-
lationship between the two. The waypoints qualita-
tively seemed to help get the agent out of difficult
situations, since once it found a valid plan to take it
out of some local minima or other oscillation point,
it would be highly likely to find a similar plan again
since the waypoints had such a high probability of



being chosen as targets. This effect of waypoints on
performance was examined in an experiment, and
the results are shown in in Figure 3. Since the curves
diverge at moderate difficulty, it appears that way-
points help speed planning by offering “hints” from
previous solutions. When the problem becomes im-
possible or nearly impossible, neither performs well.
This is what one would expect, because waypoints
are only available when a solution was found in a
previous iteration. Overall, he simulation appeared
successful enough that we set out to adapt the sys-
tem for a real robot, and to employ a KD-tree to
speed up the nearest neighbor lookup step to further
improve efficiency.

RoboCup F180 Robot Control

Figure 4: A robot (lower left) navigating through

a field of static obstacles, using an RRT path plan-

ner. Color pictures and short movies are available at

http://www.cs.cmu.edu/ jbruce/rrt.

For RoboCup F180 robot control, the system for
must take the input from a vision system, reporting
the position of all field objects detected from a fixed
overhead camera, and send the output to a radio
server which sends velocity commands to the robots
that are being controlled. The path planning prob-
lem here is mainly to navigate quickly among other
robots, while they also more around executing their
own behaviors. As a simplification for data gather-
ing, we first examined the more simple problem of
running from one end of the field to the other, with
static robots acting as obstacles in the field. In filling
in the domain dependent metrics, we first tried met-
rics that maintained continuous positional and angu-
lar velocity, continuous positional velocity only, and
fixed curvature only. None of these worked well, sub-
stantially increasing planning times to unacceptable
levels or failing to find it at all within a reasonable
number of node expansions (N=2000). All metrics
were written in terms of time and timesteps so the
planner would tend to optimize the time length of
plans. Although this was a substantial setback, we
could still fall back on the obviously physically incor-
rect model of no kinematic constraints whatsoever
and fixed time step sizes, which had been shown to

work in simulation. The extension metric then be-
came a model of a simple heuristic “goto-point” that
had already been implemented for the robot.

The motivation for this heuristic approach, and per-
haps an important lesson is the following: (1) in
real-time domain, executing a bad plan immediately
is often better than sitting still looking for a bet-
ter one, and (2) no matter how bad the plan, the
robot could follow it at some speed as long as there
are no positional discontinuities. This worked rea-
sonably, but the plans were hard to follow and often
contained unnecessary motion. It did work however,
and the robot was able to move at around 0.8m/s,
less that the 1.2m/s that could safely be achieved
by our pre-existing reactive obstacle avoidance sys-
tem. The final optimization we made was the post-
process the plan, which helped greatly. After a path
had been determined, the post processing iteratively
tested replacing the head of the plan with a single
straight path, and would keep trying more of the
head of the plan until it would hit an obstacle. Not
only did this smooth out the resulting plan, but the
robot tended to go straight at the first “restricted”
point, always trying to aim at the free space. This
helped tremendously, allowing the robot to navigate
at up to 1.7m/s, performing better than any previ-
ous system we have used on our robots. Videos of
the this system are available at the following address:
http://www.cs.cmu.edu/ jbruce/rrt
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with and without a KD-tree for nearest neighbor lookup. The

KD-tree improves performance, with the gap increasing with

the number of nodes due to its expected complexity advantage

(E[O(log (n))] vs. E[O(n)] for the naive version).

The best combination of parameters that we were
able to find, trading off physical performance and
success with execution time was the following: 500
nodes, 200 waypoints, P [goal] = 0.1, P [waypoint] =
0.7, and a step size of 1/15sec. To examine the effi-
ciency gain from using a KD-tree, we ran the system



with and without a KD-tree. The results are shown
in Figure 5. Not only does the tree have better scal-
ability to higher numbers of nodes due to its algo-
rithmic advantage, but it provides an absolute per-
formance advantage even with as few as 100 nodes.
Using the tree, and the more efficient second imple-
mentation for the robot rather than the initial pro-
totype simulator, planning was able to perform on
average in 2.1ms, with the time rarely going above
3ms. This makes the system fast enough to use in our
production RoboCup team, as it will allow 5 robots
to be controlled from a reasonably powerful machine
while leaving some time left over for higher level ac-
tion selection and strategy.

Conclusion

In this work a robot control system was developed
that used an RRT path planner to turn a simple
reactive scheme into a high performance path plan-
ning system. The novel mechanisms of the waypoint
cache and adaptive beta search were introduced, with
the waypoint cache providing much improved perfor-
mance on difficult but possible path planning prob-
lems. The real robot was able to perform better than
previous fully reactive schemes, traveling 40% faster
while avoiding obstacles, and drastically reducing os-
cillation and local minima problems that the reactive
scheme had. This is also the first application of which
we are aware using an RRT-based path planner on a
real mobile robot.

Several important lessons can be drawn from this
work in the context of real-time path planning:

• A heuristic approach for the extend operator
may perform better than a more correct model
when planning time is critical. In other words,
a better model may not improve the entire sys-
tem even if it makes the generated plans better.
Using a heuristic distance metric is not unlike
symbolic planners that generate relaxed plans
as a heuristic to guide search. Here a heuristic
metric is used to guide a local motion control
algorithm that actually took steps whose model
was an accurate model the actual system. Im-
proved heuristics seems to be a fruitful area for
further research on RRT planners to explore.

• A plan generated from an incorrect model re-
quires post-processing for optimal performance.
This is because it will contain motion steps that
are unusual or even impossible for the robot to
perform. Our real robot system worked with-
out post processing, but not nearly as well as
when a local post-processing metric could ap-
ply its accurate model over the head of the plan

and thus remove most of its kinematic inaccura-
cies for the period about to be executed. Future
work might explore a system that maintains a
kinematic constraint early in the plan, but re-
laxes it later to make the goal easier to achieve.
Another possibility is to integrate some of the
post-processing simplification into the tree gen-
eration itself, although careful attention would
need to be paid to maintaining efficiency.

• Pre-existing reactive control methods can easily
be adapted to be RRT extension and distance
metrics. It can build on these to help eliminate
oscillation and local minima through its looka-
head mechanism. This system ended up work-
ing the best, and was by far the simplest. Since
most existing robots already have reactive navi-
gation systems, and the RRT core code is highly
generic, We expect this to be a common adap-
tation in the future.

This work could not have been conducted without
the many people in our group who support our
RoboCup F180 small robot team. We would specif-
ically like to thank Brett Browning and Mike Bowl-
ing, without whom we wouldn’t have a team of
robots with which interesting research work could
be done.
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