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Abstract 

Vision systems employing region segmentation by color 
are crucial in real-time mobile robot applications, such as 
RoboCup[l], or other domains where interaction with hu- 
mans or a dynamic world is required. Traditionally, .sys- 
tems employing real-time color-based segmentation are ei- 
ther implemented in hardware, or as very specific software 
systems that take advnntape of domain knowledge to attain 
the necessary eficiency. However; we have found that with 
careful attention to algorithm eficiency, fast color image 
segmentation can be accomplished using commodity im- 
age capture and CPU hardware. Our paper describes a 
system capable of tracking several hundred regions of up 
to 32 colors at 30 Hertz on general purpose commodity 
hardware. The sofrware system is composed of four main 
parts; a novel implementation of a threshold classifier; a 
merging system to form regions through connected compo- 
nents, a separation and sorting system that gathers vari- 
ous region features, and a top down merging heuristic to 
approximate perceptual grouping. A key to the eficiency 
of our approach is a new method for accotnplishing color 
space thresholding that enables a pixel to be classified into 
one or more of up to 32 colors using only two logical A N D  
operations. A naive approach could require up to I92  coin- 
parisons for the same classi$cation. The algorithms and 
representations are described, as well as descriptions of 
three applications in which it has been used. 

1 Introduction 

An important first step in many color vision tasks is to 
classify each pixel in an image into one of a discrete num- 
ber of color classes. The leading approaches to accom- 
plishing this task include linear color thresholding, nearest 
neighbor classification, color space thresholding and prob- 
abilistic methods. 

Linear color thresholding works by partitioning the color 
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space with linear boundaries (e.g. planes in  3-dimensional 
spaces). A particular pixel is then classified according to 
which partition it  lies in. This method is convenient for 
learning systems such as neural networks (NNs), or multi- 
variate decision trees (MDTs) [ 2 ] .  

A second approach is to use nearest neighbor classifi- 
cation. Typically several hundred pre-classified exemplars 
are employed, each having a unique location in the color 
space and a n  associated classification. To classify a new 
pixel, a list of the K nearest exemplars are found, then 
the pixel is classified according to the largest proportion 
of classifications of the neighbors [3]. Both linear thresh- 
olding and nearest neighbor classification provide good re- 
sults in terms of classification accuracy, but do not provide 
real-time’ performance using off-the-shelf hardware. 

Another approach is to use a set of constant thresholds 
defining a color class as a rectangular block in the color 
space [4]. This approach offers good performance, but 
is unable to take advantage of potential dependencies be- 
tween the color space dimensions. A variant of the constant 
thresholding has been implemented in hardware by New- 
ton Laboratories [5] .  Their product provides color tracking 
data at real-time rates, but is potentially inore expensive 
than software-only approaches on general purpose hard- 
ware. 

A final related approach is to store a discretized version 
of the entire joint probability distribution. In this method, 
to check whether a particular pixel is a member of the 
color class, its individual color components are used as 
indices to a multi-dimensional histogram. When the lo- 
cation is looked up in the the returned real number indi- 
cates probability of membership. This technique enables 
a modeling of arbitrary distribution volumes and rnember- 
ship can be checked with reasonable efficiency. The ap- 
proach also enables the user to represent unusual member- 
ship volumes (e.g. cones or ellipsoids) and thus capture de- 

’ We deline ‘.teal-time” as full frame processing nt 30 Hz or faster with 
bounded rtinning time. 
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pendencies between the dimensions of the color space. The 
primary drawback to this approach is high memory cost - 
for speed the entire probability matrix must be present in 
memory. 

The approach taken in our work is a combination of the 
methods described above, but with a special focus on effi- 
ciency issues. Thus we are able to provide effective clas- 
sification at real-time rates. The method is best described 
as constant thresholding, but with a projected color space 
when needed. Above this is a layer that converts the frame 
into a more geometric representation suitable for high level 
processing. In the next section the outline of our approach 
is presented. The remaining sections describe the perfor- 
mance of a system using the method, and provide examples 
of its use in several applications. 

2 Description of the Approach 

2.1 Color Space Transformation 

Our approach involves the use of thresholds in a three 
dimensional color space. Several color spaces are in wide 
use, including Hue Saturation Intensity (HSI), YUV and 
Red Green Blue (RGB). The choice of color space for clas- 
sification depends on several factors including which is 
provided by the digitizing hardware and utility for the par- 
ticular application. 

RGB is a familiar color space often used in image pro- 
cessing, but it suffers from an important drawback for many 
robotic vision applications. Consider robotic soccer for in- 
stance, where features of the environment are marked with 
identifying colors (e.g. the ball might be painted orange). 
We would like our classification software to be robusr i n  
the face of variations in the brightness of illumination, so 
it would be useful to define “orange” in terms of a ratio of 
the intensities of Red Green and Blue in the pixel. This can 
be done in an RGB color space, but the volume implied by 
such a relation is conical and cannot be represented with 
simple thresholds. 

nance is is coded in two of the dimensions (H and S for HSI 
or U and V for YUV) while intensity is coded in the third. 
Thus a particular color can be described as “column” span- 
ning all intensities. These color spaces are therefore often 
more useful than RGB for robotic applications. 

Some digitizing hardware provides one or more appro- 
priate color spaces directly (such as HSI or YUV). In other 
cases, the space may require transformation from the one 
provided by hardware to something more appropriate. Once 
a suitable projection is selected, the resulting space can be 
partitioned using constant valued thresholds, since most of 
the significant correlations have been removed. 

In contrast, HSI and YUV have the advantage that chromi- 

The commodity digitizer we initially used provides irn- 
ages coded in  RGB. We found that rotating the RGB color 
space provides significantly more robust tracking. Much of 
the information in an RGB image varies along the intensity 
axis, which is roughly the bisecting ray of the three color 
axes. By calculating the intensity and subtracting this corn- 
ponent from each of the color values, a space in  which the 
variance lies parallel to the axes is created, allowing a more 
accurate representation of the region space by a rectangular 
box. 

Another, more robust (but more expensive) transforma- 
tion is a nonlinear fractional RGB space, where each of 
the component colors is specified as a fraction of the inten- 
sity, and the intensity is added as another dimension. This 
projection into a 4 dimensional space proved accurate, but 
with the extra dimension to process and three divides per 
pixel to calculate the fractions, it proved to be too slow for 
currently available hardware. 

We later moved to a system which provided YUV colors 
in hardware. This combines the power of a robust color 
space without the performance penalty of a software color 
space transformation. Thus systems can take advantage of 
hardware with good native color spaces, but even without 
them, a suitable transformation can lead to a reasonable 
solution. 

2.2 Thresholding 

The thresholding method described here can be used 
with general multidimensional color spaces that have dis- 
crete component color levels, but for the purposes of dis- 
cussion the YUV color space will be used as an example. 
In our approach, each color class is specified as a set of 
six threshold values: two for each dimension in the color 
space, after the transformation if one is being used. The 
mechanim used for thresholding is an important efficiency 
consideration because the thresholding operation must be 
repeated for each color at each pixel in the image. One way 
to check if a pixel is a member of a particular color class is 
to use a set of comparisons similar to 

i f  ((Y >= Ylowerthresh) 
AND (Y <= Yupperthresh) 
AND (U >= Ulowerthresh) 
AND (U <= Uupperthresh) 
AND (V >=  Vlowerthresh) 
AND (V < =  Vupperthresh)) 
pixel-color = color-class; 

to determine ifa pixel with values Y, U ,  v should be grouped 
in the color class. Unfortunately this approach is rather in- 
efficient because, once compiled, i t  could require as many 
as 6 conditional branches to determine mernbership in one 
color class for each pixel. This can be especially ineffi- 
cient on pipelined processors with speculative instruction 
execution. 

- 2062 - 



Figure 

Binary Signal Decomposition of Threshold 
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three-dimensional region of the color space for 

Instead, our implementation uses a boolean valued de- 
composition of the multidimensional threshold. Such a re- 
gion can be represented as the product of three functions, 
one along each of the axes in the space (Figure 1). The 
decomposed representation is stored in arrays, with one ar- 
ray element for each value of a color component. Thus 
class membership can be computed as the bitwise AND of 
the elements of each array indicated by the color compo- 
nent values: 

pixel-in-class = YClass[Y] 
AND UClass[U] 
AND VClass[V]; 

The resulting boolean value of pixel-in-class indicates 
whether the pixel belongs to the class or not. This approach 
allows the system to scale linearly with the number of pix- 
els and color space dimensions, and can be implemented as 
a few array lookups per pixel. The operation is much faster 
than the naive approach because the the bitwise AND is a 
significantly lower cost operation than an integer compare 
on most modern processors. 

To illustrate the approach, consider the following ex- 
ample. Suppose we discretize the YUV color space to 10 
levels in each each dimension. So “orange,” for example 
might be represented by assigning the following valuea to 
the elements of each array: 

YClass[] = {O,l,l,l,l,l,l,l,l,l); 
UClass[] = {0,0,0,0,0,0,0,1,1,1); 
VClassIl = {0,0,0,0,0,0,0,1,1,1); 

Thus, to check if a pixel with color values ( 1,8,9 ) is a 
member of the color class “orange” all we need to do is 
evaluate the expression YClass [ 11 AND UClass [ 8 ] AND 

Y 

Visualization as Threshold in Full Color Space 

classification is represented as a combination of three binary 

VClass [ 9 ] ,  which in this case would resolve to 1, or t rue  
indicating that color is in the class “orange.” 

One of the most significant advantages of our approach 
is that i t  can determine a pixel’s membership in multiple 
color classes simultaneously. By exploiting parallelism in 
the bit-wise AND operation for integers we can determine 
membership in several classes at once. As a n  example. 
suppose the region of the color space occupied by “blue” 
pixels were represented as follows: 

YClass[l = {O,l,l,l,l,l,l,l,l,l~; 
uClass[] = ( 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ;  
VClass[l = {0,0,0,1,1,1,0,0,0,0); 

Rather than build a separate set of arrays for each color, 
we can combine the arrays using each bit position an ar- 
ray element to represent the corresponding values for each 
color. So. for  example if each element in an array were a 
two-bit integer, we could combine the ”orange” and “blue” 
representations as follows: 

YClass [ ] = { O O ,  11,11,11,11,11,11,11,11,11) ; 

UClass[l = {01,01,01,00,00,00,00,10,10,10~; 
VClass [ ] = (00, 00, 00,01,01,01,00,10,10,10) ; 

Where the first (high-order) bit in each element is used 
to represent “orange” and the second bit is used to rep- 
resent “blue.” Thus we can check whether (1,8,9) is 
in one of the two classes by evaluating the single expres- 
sion YClass[l] AND UClass[8] AND VClass[91. The 
result is 10, indicating the color is in the “orange” class but 
not “blue.” 

In  oui- Implementation, each array element is a 32-bit 
integer. It is therefore possible to evaluate membership in 
32 distinct color classes at once with two AND operations. 
In contrast, the naive comparison approach could require 
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32 x 6, or up to 192 comparisons for the same operation. 
Additionally, due to the small size of the color class rep- 
resentation, the algorithm can take advantage of memory 
caching effects. 

2.3 Connected Regions 

After the various color samples have been classified, 
connected regions are formed by examining the classitied 
samples. This is typically an expensive operation that can 
severely impact real-time performance. Our connected com- 
ponents merging procedure is implemented in two stages 
for efficiency reasons. 

The first stage is to compute a run length encoded (RLE) 
version for the classified image. In many robotic vision ap- 
plications significant changes in adjacent image pixels are 
relatively infrequent. By grouping similar adjacent pixels 
as a single “run” we have an opportunity for efficiency be- 
cause subsequent users of the data can operate on entire 
runs rather than individual pixels. There is also the prac- 
tical benefit that region merging need now only look for 
vertical connectivity, because the horizontal components 
are merged in the transformation to the RLE image. 

The merging method employs a tree-based union Jind 
with path compression. This offers performance that is 
not only good in practice but also provides a hard algo- 
rithmic bound that is for all practical purposes linear [6]. 
The merging is performed in place on the classified RLE 
image. This is because each run contains a field with all 
the necessary information; an identifier indicating a run’s 
parent element (the upper leftmost member of the region). 
Initially, each run labela itself as its parent, resulting in a 
completely disjoint forest. The merging procedure scans 
adjacent rows and merges runs which are of the same color 
class and overlap under four-connectedness. This results in 
a disjoint forest where the each run’s parent pointer points 
upward toward the region’s global parent. Thus a second 
pass is needed to compress all of the paths so that each run 
is labeled with its the actual parent. Now each set of runs 
pointing to a single parent uniquely identifies a connected 
region. The process is illustrated in Figure 2). 

Other statistics can optionally be computed with acldi- 
tional passes. Currently the only additional option is to 
compute the average color of a region, which can be useful 
as a method of double thresholding to verify if a region has 
the same color as the desired object. Other features that 
may be included in the future are color variance within a 
region, and convex hulls and edge points which could be 
useful for geometric model fitting. 

After the statistics have been calculated, the regions are 
separated based on color into separate threaded linked lists 
in the region table. Finally, they are sorted by size so that 
high level processing algorithms can deal with the larger 
(and presumably more important) regions and ignore rela- 
tively smaller ones which are most often the result of noise. 

2.5 Density-Based Region Merging 

In the final layer before data is passed back up to.the 
client application, a top-down merging heuristic is applied 
that helps eliminate some of the errors generated in the bot- 
tom up region generation. The problem addressed here is 
best introduced with an example. If a detected region were 
to have a single line of misidentified pixels transecting it, 
the lower levels of the vision system would identify i t  as 
two separate regions rather than a single one. Thus a min- 
imal change in the initial input can yield vastly differing 
results. 

One solution in this case is to employ a sort of grouping 
heuristic, where similar objects near each other are consid- 
ered a single object rather than distinct ones. Since the re- 
gion statistics include both the area and the bounding box, 
a density measure can be obtained. The merging heuris- 
tic is operationalized as merging pairs of regions, which 
if merged would have a density is above a threshold set 
individually for  each color. Thus the amount of “group- 
ing force” can be varied depending on what is appropri- 
ate for objects of a particular color. In the example above, 
the area separating the two regions is small, so the density 
would still be high when the regions are merged, thus it is 
likely that they would be above the threshold and would be 
grouped together as a individual region. 

2.4 Extracting Region Information 
3 Results and Applications 

In the next step we extract region information from the 
merged RLE map. The bounding box, centroid, and the 
size of the region are calculated incrementally in a single 
pass over the forest data structure. Because the algorithm is 
passing over the image a run at a time, and not processing 
a region at a time, the region labels are renumbered so that 
each region label is the index of a region structure in the 
region table. This facilitates a significantly faster lookup 
while computing the incremental statistics. 

The first implementation was a prototype for a group of 
inexpensive autonomous robots based on the Probotics Cye 
platforml71. These robots are based on commodity hard- 
ware to keep the cost low and aid in simplicity. They still 
require high performance vision however because it  will 
serve as their primary hazard sensor. The platform uses 
a conventional NTSC color camera linked to a AMD K6 
based PC-104 computer and a Winnov digitizer. The op- 
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1: Runs start as a fully disjoint forest 
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2. Scanning adjacent lines, neighbors are merged 
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3: New parent assignments are to the furthest parent 
I-, 
4: If overlap i s  detected, latter parent is updated 

Figure 2: An example of how regions are grouped after run length encoding. 

erating system is a standard Linux distribution and kernel 

Figure 3: An example image classified using the approach 
presented in the paper. The image on the left is a compos- 
ite of objects tracked by a soccer robot at RoboCup-99: a 
position marker (top), a goal area (middle) and three soc- 
cer balls (bottom). The classified image is on the right. 
(Color versions of these images are available online at 
http://www.coral.cs.cmu/cmvision.) 

with Video for Linux drivers for video capture. In its cur- 
rent form the system can process 320x240 images at 30 Hz 
with 30% utilization of the 350 MHz CPU. 

The second successful application was for Cnrnegie Mel- 
Ion’s entry i n w  the RoboCup-99 legged-robot leaguel81. 
These robots, provided by Sony, are quadrupeds similar to 
the commercially available Aibo entertainment robot. The 
robots play a game of three versus three soccer against 
other teams in a tournament. To play effectively, several 
objects must be recognized and processed, including the 
ball, teammates and opponents, two goals, and 6 location 
markers placed around the field. The hardware includes a 
camera producing 88x60 frames in the YUV color space 
at about 151-Iz. In this application color classification is 
done in hardware, removing the need for this step in the 
software system. Even with one step of the algorithm han- 
dled in software however, limited computational resources 
require an optimized algorithm in order to leave time for 
higher-level processes like motion control, team behaviors, 
and localizatiun. The system included the denbity based re- 
gion merging heuristic to overcome excessively noisy im- 
ages that simple connectivity could not handle. The sys- 
tem proved 10 be robust at the RoboCup-99 competition, 
enabling our team to finish 3rd in the international compe- 
tition. 

The third application of the system is as part of an en- 
try for the RoboCup small-size league (F180). This do- 
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main involves a static camera tracking remotely controlled 
robots playing soccer on a small field. Our system uses 
a single camera above the center of the field. The system 
can now track the ball, and ten robots. The five teammate 
robots contain a standard marker, as well as special orien- 
tation and unique identification color patches. The oppo- 
nent robots use a standard marker and additional patterns of 
their choice for their tracking systems. Full frame process- 
ing is beneficial in this domain due to temporary occlusion 
of the ball or robots, and in accurate tracking of the ball 
and robots moving at speeds up to 4 d s .  At a resolution 
of 640x480 and 30Hz capture frequency, the system uses 
60% of a 700MHz Pentium 111. 

4 Conclusion 

We have presented a new system for real-time segmen- 
tation of color images. It can classify each pixel in a full 
resolution captured color image, find and merge regions of 
up to 32 colors, and report their centroid, bounding box and 
area at 30 Hz. The primary contribution of this system is 
that it i s  a software-only approach implemented on general 
purpose, inexpensive, hardware (in our case 350MHz or 
700MHz x86 compatible systems with $200 image digitiz- 
ers). Among full frame processing systems, this provides a 
significant advantage over more expensive hardware-only 
solutions, or other slower software approaches. 

The system operates on the image in several steps: 

1. Optionally project the color space. 

2. Classify each pixel as one of up to 32 colors. 

3. Run length encode each scanline according to color. 

4. Group runs of the same color into regions. 

5. Pass over the structure gathering region statistics. 

6. Sort regions by color and size. 

The speed of our approach is due to a focus on efficient al- 
gorithms at each step. Step l is accomplished with a linear 
transformation. In Step 2 we discard a naive approach that 
would require up to 192 comparisons per pixel in favor of a 
faster calculation using two bit-wise AND operations. Step 
3 is linear in the number of pixels. Step 4 is accomplished 
using an efficient unionjnd algorithm. The sorting in Step 
5 is accomplished with radix sort, while Step 6 is com- 
pleted in a single pass over the resulting data structure. 

The approach is intended primarily to accelerate low 
level vision for use in real-time applications where hard- 
ware acceleration is either too expensive or unavailable. 
Functionality is appropriate to provide input to higher level 

routines which encode geometric and/or domain-specific 
processing. This tool enables formerly offline processes 
to run as a part of a real-time intelligent vision system. 
The current system and its variants have been demonstrated 
successfully on three hardware platforms. 
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