
Proceedings of the 2000 /€f€/RSJ
International Conference on
intelligent Robots and Systems

Fast and Inexpensive Color Image Segmentation for Interactive Robots

James Bruce Tucker Balch

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{jbruce,trb,mmv} @cs.cmu.edu

Abstract

Vision systems employing region segmentation by color
are crucial in real-time mobile robot applications, such as
RoboCup[l], or other domains where interaction with hu-
mans or a dynamic world is required. Traditionally, .sys-
tems employing real-time color-based segmentation are ei-
ther implemented in hardware, or as very specific software
systems that take advnntape of domain knowledge to attain
the necessary eficiency. However; we have found that with
careful attention to algorithm eficiency, fast color image
segmentation can be accomplished using commodity im-
age capture and CPU hardware. Our paper describes a
system capable of tracking several hundred regions of up
to 32 colors at 30 Hertz on general purpose commodity
hardware. The sofrware system is composed of four main
parts; a novel implementation of a threshold classifier; a
merging system to form regions through connected compo-
nents, a separation and sorting system that gathers vari-
ous region features, and a top down merging heuristic to
approximate perceptual grouping. A key to the eficiency
of our approach is a new method for accotnplishing color
space thresholding that enables a pixel to be classified into
one or more of up to 32 colors using only two logical A N D
operations. A naive approach could require up to I92 coin-
parisons for the same classi$cation. The algorithms and
representations are described, as well as descriptions of
three applications in which it has been used.

1 Introduction

An important first step in many color vision tasks is to
classify each pixel in an image into one of a discrete num-
ber of color classes. The leading approaches to accom-
plishing this task include linear color thresholding, nearest
neighbor classification, color space thresholding and prob-
abilistic methods.

Linear color thresholding works by partitioning the color

Manuela Veloso

space with linear boundaries (e.g. planes in 3-dimensional
spaces). A particular pixel is then classified according to
which partition it lies in. This method is convenient for
learning systems such as neural networks (NNs), or multi-
variate decision trees (MDTs) [2] .

A second approach is to use nearest neighbor classifi-
cation. Typically several hundred pre-classified exemplars
are employed, each having a unique location in the color
space and a n associated classification. To classify a new
pixel, a list of the K nearest exemplars are found, then
the pixel is classified according to the largest proportion
of classifications of the neighbors [3]. Both linear thresh-
olding and nearest neighbor classification provide good re-
sults in terms of classification accuracy, but do not provide
real-time’ performance using off-the-shelf hardware.

Another approach is to use a set of constant thresholds
defining a color class as a rectangular block in the color
space [4]. This approach offers good performance, but
is unable to take advantage of potential dependencies be-
tween the color space dimensions. A variant of the constant
thresholding has been implemented in hardware by New-
ton Laboratories [5] . Their product provides color tracking
data at real-time rates, but is potentially inore expensive
than software-only approaches on general purpose hard-
ware.

A final related approach is to store a discretized version
of the entire joint probability distribution. In this method,
to check whether a particular pixel is a member of the
color class, its individual color components are used as
indices to a multi-dimensional histogram. When the lo-
cation is looked up in the the returned real number indi-
cates probability of membership. This technique enables
a modeling of arbitrary distribution volumes and rnember-
ship can be checked with reasonable efficiency. The ap-
proach also enables the user to represent unusual member-
ship volumes (e.g. cones or ellipsoids) and thus capture de-

’ We deline ‘.teal-time” as full frame processing nt 30 Hz or faster with
bounded rtinning time.

0-7803-6348-5/00/$10.00 02000 IEEE.
-2061-

mailto:cs.cmu.edu

pendencies between the dimensions of the color space. The
primary drawback to this approach is high memory cost -
for speed the entire probability matrix must be present in
memory.

The approach taken in our work is a combination of the
methods described above, but with a special focus on effi-
ciency issues. Thus we are able to provide effective clas-
sification at real-time rates. The method is best described
as constant thresholding, but with a projected color space
when needed. Above this is a layer that converts the frame
into a more geometric representation suitable for high level
processing. In the next section the outline of our approach
is presented. The remaining sections describe the perfor-
mance of a system using the method, and provide examples
of its use in several applications.

2 Description of the Approach

2.1 Color Space Transformation

Our approach involves the use of thresholds in a three
dimensional color space. Several color spaces are in wide
use, including Hue Saturation Intensity (HSI), YUV and
Red Green Blue (RGB). The choice of color space for clas-
sification depends on several factors including which is
provided by the digitizing hardware and utility for the par-
ticular application.

RGB is a familiar color space often used in image pro-
cessing, but it suffers from an important drawback for many
robotic vision applications. Consider robotic soccer for in-
stance, where features of the environment are marked with
identifying colors (e.g. the ball might be painted orange).
We would like our classification software to be robusr i n
the face of variations in the brightness of illumination, so
it would be useful to define “orange” in terms of a ratio of
the intensities of Red Green and Blue in the pixel. This can
be done in an RGB color space, but the volume implied by
such a relation is conical and cannot be represented with
simple thresholds.

nance is is coded in two of the dimensions (H and S for HSI
or U and V for YUV) while intensity is coded in the third.
Thus a particular color can be described as “column” span-
ning all intensities. These color spaces are therefore often
more useful than RGB for robotic applications.

Some digitizing hardware provides one or more appro-
priate color spaces directly (such as HSI or YUV). In other
cases, the space may require transformation from the one
provided by hardware to something more appropriate. Once
a suitable projection is selected, the resulting space can be
partitioned using constant valued thresholds, since most of
the significant correlations have been removed.

In contrast, HSI and YUV have the advantage that chromi-

The commodity digitizer we initially used provides irn-
ages coded in RGB. We found that rotating the RGB color
space provides significantly more robust tracking. Much of
the information in an RGB image varies along the intensity
axis, which is roughly the bisecting ray of the three color
axes. By calculating the intensity and subtracting this corn-
ponent from each of the color values, a space in which the
variance lies parallel to the axes is created, allowing a more
accurate representation of the region space by a rectangular
box.

Another, more robust (but more expensive) transforma-
tion is a nonlinear fractional RGB space, where each of
the component colors is specified as a fraction of the inten-
sity, and the intensity is added as another dimension. This
projection into a 4 dimensional space proved accurate, but
with the extra dimension to process and three divides per
pixel to calculate the fractions, it proved to be too slow for
currently available hardware.

We later moved to a system which provided YUV colors
in hardware. This combines the power of a robust color
space without the performance penalty of a software color
space transformation. Thus systems can take advantage of
hardware with good native color spaces, but even without
them, a suitable transformation can lead to a reasonable
solution.

2.2 Thresholding

The thresholding method described here can be used
with general multidimensional color spaces that have dis-
crete component color levels, but for the purposes of dis-
cussion the YUV color space will be used as an example.
In our approach, each color class is specified as a set of
six threshold values: two for each dimension in the color
space, after the transformation if one is being used. The
mechanim used for thresholding is an important efficiency
consideration because the thresholding operation must be
repeated for each color at each pixel in the image. One way
to check if a pixel is a member of a particular color class is
to use a set of comparisons similar to

i f ((Y >= Ylowerthresh)
AND (Y <= Yupperthresh)
AND (U >= Ulowerthresh)
AND (U <= Uupperthresh)
AND (V >= Vlowerthresh)
AND (V < = Vupperthresh))
pixel-color = color-class;

to determine ifa pixel with values Y, U , v should be grouped
in the color class. Unfortunately this approach is rather in-
efficient because, once compiled, i t could require as many
as 6 conditional branches to determine mernbership in one
color class for each pixel. This can be especially ineffi-
cient on pipelined processors with speculative instruction
execution.

- 2062 -

Figure

Binary Signal Decomposition of Threshold

I: A
functions.

three-dimensional region of the color space for

Instead, our implementation uses a boolean valued de-
composition of the multidimensional threshold. Such a re-
gion can be represented as the product of three functions,
one along each of the axes in the space (Figure 1). The
decomposed representation is stored in arrays, with one ar-
ray element for each value of a color component. Thus
class membership can be computed as the bitwise AND of
the elements of each array indicated by the color compo-
nent values:

pixel-in-class = YClass[Y]
AND UClass[U]
AND VClass[V];

The resulting boolean value of pixel-in-class indicates
whether the pixel belongs to the class or not. This approach
allows the system to scale linearly with the number of pix-
els and color space dimensions, and can be implemented as
a few array lookups per pixel. The operation is much faster
than the naive approach because the the bitwise AND is a
significantly lower cost operation than an integer compare
on most modern processors.

To illustrate the approach, consider the following ex-
ample. Suppose we discretize the YUV color space to 10
levels in each each dimension. So “orange,” for example
might be represented by assigning the following valuea to
the elements of each array:

YClass[] = {O,l,l,l,l,l,l,l,l,l);
UClass[] = {0,0,0,0,0,0,0,1,1,1);
VClassIl = {0,0,0,0,0,0,0,1,1,1);

Thus, to check if a pixel with color values (1,8,9) is a
member of the color class “orange” all we need to do is
evaluate the expression YClass [11 AND UClass [8] AND

Y

Visualization as Threshold in Full Color Space

classification is represented as a combination of three binary

VClass [9] , which in this case would resolve to 1, or t rue
indicating that color is in the class “orange.”

One of the most significant advantages of our approach
is that i t can determine a pixel’s membership in multiple
color classes simultaneously. By exploiting parallelism in
the bit-wise AND operation for integers we can determine
membership in several classes at once. As a n example.
suppose the region of the color space occupied by “blue”
pixels were represented as follows:

YClass[l = {O,l,l,l,l,l,l,l,l,l~;
uClass[] = (1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ;
VClass[l = {0,0,0,1,1,1,0,0,0,0);

Rather than build a separate set of arrays for each color,
we can combine the arrays using each bit position an ar-
ray element to represent the corresponding values for each
color. So. for example if each element in an array were a
two-bit integer, we could combine the ”orange” and “blue”
representations as follows:

YClass [] = { O O , 11,11,11,11,11,11,11,11,11) ;

UClass[l = {01,01,01,00,00,00,00,10,10,10~;
VClass [] = (00, 00, 00,01,01,01,00,10,10,10) ;

Where the first (high-order) bit in each element is used
to represent “orange” and the second bit is used to rep-
resent “blue.” Thus we can check whether (1,8,9) is
in one of the two classes by evaluating the single expres-
sion YClass[l] AND UClass[8] AND VClass[91. The
result is 10, indicating the color is in the “orange” class but
not “blue.”

In oui- Implementation, each array element is a 32-bit
integer. It is therefore possible to evaluate membership in
32 distinct color classes at once with two AND operations.
In contrast, the naive comparison approach could require

- 2063 -

32 x 6, or up to 192 comparisons for the same operation.
Additionally, due to the small size of the color class rep-
resentation, the algorithm can take advantage of memory
caching effects.

2.3 Connected Regions

After the various color samples have been classified,
connected regions are formed by examining the classitied
samples. This is typically an expensive operation that can
severely impact real-time performance. Our connected com-
ponents merging procedure is implemented in two stages
for efficiency reasons.

The first stage is to compute a run length encoded (RLE)
version for the classified image. In many robotic vision ap-
plications significant changes in adjacent image pixels are
relatively infrequent. By grouping similar adjacent pixels
as a single “run” we have an opportunity for efficiency be-
cause subsequent users of the data can operate on entire
runs rather than individual pixels. There is also the prac-
tical benefit that region merging need now only look for
vertical connectivity, because the horizontal components
are merged in the transformation to the RLE image.

The merging method employs a tree-based union Jind
with path compression. This offers performance that is
not only good in practice but also provides a hard algo-
rithmic bound that is for all practical purposes linear [6].
The merging is performed in place on the classified RLE
image. This is because each run contains a field with all
the necessary information; an identifier indicating a run’s
parent element (the upper leftmost member of the region).
Initially, each run labela itself as its parent, resulting in a
completely disjoint forest. The merging procedure scans
adjacent rows and merges runs which are of the same color
class and overlap under four-connectedness. This results in
a disjoint forest where the each run’s parent pointer points
upward toward the region’s global parent. Thus a second
pass is needed to compress all of the paths so that each run
is labeled with its the actual parent. Now each set of runs
pointing to a single parent uniquely identifies a connected
region. The process is illustrated in Figure 2).

Other statistics can optionally be computed with acldi-
tional passes. Currently the only additional option is to
compute the average color of a region, which can be useful
as a method of double thresholding to verify if a region has
the same color as the desired object. Other features that
may be included in the future are color variance within a
region, and convex hulls and edge points which could be
useful for geometric model fitting.

After the statistics have been calculated, the regions are
separated based on color into separate threaded linked lists
in the region table. Finally, they are sorted by size so that
high level processing algorithms can deal with the larger
(and presumably more important) regions and ignore rela-
tively smaller ones which are most often the result of noise.

2.5 Density-Based Region Merging

In the final layer before data is passed back up to.the
client application, a top-down merging heuristic is applied
that helps eliminate some of the errors generated in the bot-
tom up region generation. The problem addressed here is
best introduced with an example. If a detected region were
to have a single line of misidentified pixels transecting it,
the lower levels of the vision system would identify i t as
two separate regions rather than a single one. Thus a min-
imal change in the initial input can yield vastly differing
results.

One solution in this case is to employ a sort of grouping
heuristic, where similar objects near each other are consid-
ered a single object rather than distinct ones. Since the re-
gion statistics include both the area and the bounding box,
a density measure can be obtained. The merging heuris-
tic is operationalized as merging pairs of regions, which
if merged would have a density is above a threshold set
individually for each color. Thus the amount of “group-
ing force” can be varied depending on what is appropri-
ate for objects of a particular color. In the example above,
the area separating the two regions is small, so the density
would still be high when the regions are merged, thus it is
likely that they would be above the threshold and would be
grouped together as a individual region.

2.4 Extracting Region Information
3 Results and Applications

In the next step we extract region information from the
merged RLE map. The bounding box, centroid, and the
size of the region are calculated incrementally in a single
pass over the forest data structure. Because the algorithm is
passing over the image a run at a time, and not processing
a region at a time, the region labels are renumbered so that
each region label is the index of a region structure in the
region table. This facilitates a significantly faster lookup
while computing the incremental statistics.

The first implementation was a prototype for a group of
inexpensive autonomous robots based on the Probotics Cye
platforml71. These robots are based on commodity hard-
ware to keep the cost low and aid in simplicity. They still
require high performance vision however because it will
serve as their primary hazard sensor. The platform uses
a conventional NTSC color camera linked to a AMD K6
based PC-104 computer and a Winnov digitizer. The op-

- 2064 -

Y

I ’ X

1: Runs start as a fully disjoint forest

Y

2. Scanning adjacent lines, neighbors are merged

W Y

3: New parent assignments are to the furthest parent
I-,
4: If overlap i s detected, latter parent is updated

Figure 2: An example of how regions are grouped after run length encoding.

erating system is a standard Linux distribution and kernel

Figure 3: An example image classified using the approach
presented in the paper. The image on the left is a compos-
ite of objects tracked by a soccer robot at RoboCup-99: a
position marker (top), a goal area (middle) and three soc-
cer balls (bottom). The classified image is on the right.
(Color versions of these images are available online at
http://www.coral.cs.cmu/cmvision.)

with Video for Linux drivers for video capture. In its cur-
rent form the system can process 320x240 images at 30 Hz
with 30% utilization of the 350 MHz CPU.

The second successful application was for Cnrnegie Mel-
Ion’s entry i n w the RoboCup-99 legged-robot leaguel81.
These robots, provided by Sony, are quadrupeds similar to
the commercially available Aibo entertainment robot. The
robots play a game of three versus three soccer against
other teams in a tournament. To play effectively, several
objects must be recognized and processed, including the
ball, teammates and opponents, two goals, and 6 location
markers placed around the field. The hardware includes a
camera producing 88x60 frames in the YUV color space
at about 151-Iz. In this application color classification is
done in hardware, removing the need for this step in the
software system. Even with one step of the algorithm han-
dled in software however, limited computational resources
require an optimized algorithm in order to leave time for
higher-level processes like motion control, team behaviors,
and localizatiun. The system included the denbity based re-
gion merging heuristic to overcome excessively noisy im-
ages that simple connectivity could not handle. The sys-
tem proved 10 be robust at the RoboCup-99 competition,
enabling our team to finish 3rd in the international compe-
tition.

The third application of the system is as part of an en-
try for the RoboCup small-size league (F180). This do-

- 2065-

http://www.coral.cs.cmu/cmvision

main involves a static camera tracking remotely controlled
robots playing soccer on a small field. Our system uses
a single camera above the center of the field. The system
can now track the ball, and ten robots. The five teammate
robots contain a standard marker, as well as special orien-
tation and unique identification color patches. The oppo-
nent robots use a standard marker and additional patterns of
their choice for their tracking systems. Full frame process-
ing is beneficial in this domain due to temporary occlusion
of the ball or robots, and in accurate tracking of the ball
and robots moving at speeds up to 4 d s . At a resolution
of 640x480 and 30Hz capture frequency, the system uses
60% of a 700MHz Pentium 111.

4 Conclusion

We have presented a new system for real-time segmen-
tation of color images. It can classify each pixel in a full
resolution captured color image, find and merge regions of
up to 32 colors, and report their centroid, bounding box and
area at 30 Hz. The primary contribution of this system is
that it i s a software-only approach implemented on general
purpose, inexpensive, hardware (in our case 350MHz or
700MHz x86 compatible systems with $200 image digitiz-
ers). Among full frame processing systems, this provides a
significant advantage over more expensive hardware-only
solutions, or other slower software approaches.

The system operates on the image in several steps:

1. Optionally project the color space.

2. Classify each pixel as one of up to 32 colors.

3. Run length encode each scanline according to color.

4. Group runs of the same color into regions.

5. Pass over the structure gathering region statistics.

6. Sort regions by color and size.

The speed of our approach is due to a focus on efficient al-
gorithms at each step. Step l is accomplished with a linear
transformation. In Step 2 we discard a naive approach that
would require up to 192 comparisons per pixel in favor of a
faster calculation using two bit-wise AND operations. Step
3 is linear in the number of pixels. Step 4 is accomplished
using an efficient unionjnd algorithm. The sorting in Step
5 is accomplished with radix sort, while Step 6 is com-
pleted in a single pass over the resulting data structure.

The approach is intended primarily to accelerate low
level vision for use in real-time applications where hard-
ware acceleration is either too expensive or unavailable.
Functionality is appropriate to provide input to higher level

routines which encode geometric and/or domain-specific
processing. This tool enables formerly offline processes
to run as a part of a real-time intelligent vision system.
The current system and its variants have been demonstrated
successfully on three hardware platforms.

References

[I] H. Kitano, Y. Kuniyoshi, I. Noda, M. Asada, H. Mat-
subara, and E. Osawa. RoboCup: A challenge problem
for AI. A / Magazine, 18(l), pages 73-85, 1997.

[2] C. E. Brodley and P. E. Utgoff. Multivariate decision
trees. Machine Learning, 1995.

[3] T. A. Brown and J. Koplowitz. The weighted nearest
neighbor rule for class dependent sample sizes. ZEEE
Transactions on Information Theory, pages 6 17-6 19,
1979.

[4] R. Jain, R. Kasturi, and B. G. Schunck. Machine Vi-
sion. McGraw-Hill, 1995.

[SI Newton Laboratories. Cognachrume image capture
device. h t t p : //www.newtonlabs. com, 1999.

[6] R. E. Tarjan. Data structures and network algorithms.
Data Structures and Network A lgo r i t hs , 1983.

[7] The Probotics Cye Personal Robot. h t t p : / /
www.probotics.com, 2000.

[8] M. Veloso, E. Winner, S. Lenser, J. Bruce, and
T. Balch. Vision-Servoed Localization and Behaviors
for an Autonomous Quadruped Legged Robot Art$
cia1 Intelligence Planning Systems, 2000.

- 2066 -

http://www.probotics.com

