
CMRoboBits (15-491) Fall 2007 – Homework4

Due Wednesday, October 22th 2008 at the beginning of lab 
(12:30pm)

Part 1. Overhead Vision and Probabilistic Path Planning 
(RRT) (90%)
In this homework you will create a VPL/C# behavior that makes use of an overhead 
vision  service  we  provide.  Your  program  will  have  to  localize  your  robot  and 
determine its orientation based on colored markers. It should then allow your robot 
to reliably drive to a designated point using a closed-loop approach.

Additionally, there will be obstacles in the domain which will also be marked with 
colored patterns. You should implement an RRT (Rapidly exploring Random Tree)-
based algorithm to compute a collision free path from one side of the field to the 
other. Once your robot reaches that side, it should make its way, back, looping back 
and  forth  forever  without  hitting  any  obstacles.  The  obstacles  will  be  placed 
randomly and might move slowly between and/or during iterations, so it is crucial 
that you constantly re-plan as you go along. For the re-planning, you are to use the 
ERRT algorithm.

The Vision Service
On the lab machines, you will find a service called “VisionClient”. This service will 
automatically connect to the vision server located in the REL and return a list of 
colored regions (called Blobs).

If  you need to install  the vision client on your laptop,  you can do so by simply 
extracting the zip-file provided at the course website to “c:\microsoft robotics studio 
(1.5)\bin”.

The only function you need to call from this service is “getBlobs”. The resulting list 
will be sorted primarily by color and each color will be sorted by size.

Each  Blob  will  provide  you  the  following  information  (very  similar  to  the 
ColorSegmentation Service you already used):

• “color”, An integer determining which color-label the blob is (see further 
below for explanation)

• “area”, The area of the blob in pixels

Page 1 of 5



• “cx”,”cy”, The x and y coordinates of the blob’s centroid (its “center of 
mass”).

• “x1”,”x2”,”y1”,”y2”, The x and y coordinates of the blob’s bounding box from 
x1,y1 to x2,y2

Note that the camera coordinates are in the range from (0,0) to (720,480).

Also note, that the vision coordinates are in camera-coordinates (e.g. the camera is 
not geometrically  calibrated in any way).  Since distortion is  fairly small  and the 
camera is mounted overhead, you can ignore these issues, and should assume that 
camera-coordinates are in direct linear relationship to world-coordinates.

The “color” integer is one of the following labels:

1 = “iRobot White”, the iRobot’s color
2 = “Scribbler Blue-ish”, the Scribbler’s color, since it is fairly de-saturated you 
probably don’t want to use it for anything, but instead rely on colored patterns
3 = “Yellow Paper”
4 = “Bright Blue Paper”
5 = “Orange Paper” = Obstacle
6 = ”Red Paper”
7 = “Bright Green Paper”

To use this service in C# you should be able to place it inside a custom activity, 
connect it to your activity’s input/output calling its getBlobs function, and then 
select “Compile as Service” as you did for the previous lab. This should give you 
programmatic access to the Vision Services result.

General Vision Hints
The Vision service will send all regions back at you which are greater than 8 pixels 
in area. Depending on noise and lighting conditions this could be a lot of different 
regions. You might want to perform additional filtering to make sure your Blob is 
large enough to really represent a robot. You can also look at its bounding box to 
make sure that its height/width bounding ratio is roughly square (don’t be too strict 
on your filtering though). Keep in mind that within each color, regions are sorted by 
size, so picking the first “n” of each color is usually a good strategy, unless you 
intend to use some more sophisticated tracking algorithm.

Obtaining position/orientation
The probably easiest way to obtain your robot’s position and orientation is by using 
two different colored markers on opposite sides of the robot (e.g. one blue, one 
green, see image further below). Your markers should be as big as possible without 
overlapping  for  giving  you  the  best  vision  result.  This  should  give  you  all  the 
information you need to compute the robot’s position and orientation.

Page 2 of 5



RRT path planning
You should implement your RRT-based planner in C#. You should know the positions 
of all your obstacles (which will be of color orange). As for a radius, they will be 
about the size of an iRobot Create, so you should use that plus your own radius plus 
a tolerance for your avoidance distance check. You will need to come up with some 
very basic “line-segment and circle” intersection algorithm. Note that if  you can 
compute the shortest distance from a point to the line-segment, this will inherently 
do the same trick.

You should continuously re-run your planner as your robot drives along. Obstacles 
should be able to move while your robot is driving and your robot should adjust its 
plan accordingly.

The RRT algorithm, as introduced in the lectures, itself is as follows (in extreme 
pseudo-code):

Let your tree T consist of only the root, which is your current 
position.

While (GoalFound==false && iterations < MaxIterations) {
Let x be a random value in the range from 0 to 1
If (x  < alpha) {

Let p be a random point, anywhere on the field
}  else  {

Let p = the goal point
}
Find the node n of the existing Tree T that’s closest to p.
Add a new node from n extending a constant distance d in the 
direction towards p. ONLY IF this extension will not hit any 
obstacles, add this new node to the Tree T, and make sure to 
store with it an index to its parent node n. If your new node is 
close enough to the goal, then you’re done: GoalFound=true;
iterations++;

}

Now, going backwards from the node that found the goal, you can back-
track the final path by following its chain of parental nodes 
until you reach the starting node.

“alpha”  in  this  case,  is  a  parameter  you  chose.  It  determines  your  algorithm’s 
probabilistic bias towards the goal. “MaxIterations” is another parameter that will 
limit your algorithm to plan a certain number of iterations and then give up if it 
hasn’t  found  a  goal.  Otherwise,  if  no  path  exists,  your  planner  would  run  on 
indefinitely.  Your  step-distance  “d”  should  be  a  value  that’s  small  enough  for 

Page 3 of 5



accuracy, but large enough for speed. A value in the range of a few cm (or pixels 
respectively) should suffice.

ERRT planning
Because your robot will need to do re-planning, you should extend the above 
algorithm to an ERRT by adding a third probabilistic possibility besides letting p be a 
random point or the goal. In this third case, p would be a random point from the 
previous iteration’s successful path (if one was found). Depending on your 
probability for this option, your algorithm will be biased much more strongly on re-
finding a path it has previously found.

RRT path smoothing (optional)
Keep in mind that RRT might return some very edgy and non-optimized plan. It thus 
is a good idea to “smooth out” the path using a very simple technique. In essence, 
you should check from your current position (the root node) whether you can reach 
a node beyond the next planned node by driving to it in a straight line without 
hitting any obstacles. If you can, then try a straight line from your current node the 
very next one, etc. This will  smooth out any unnecessary edges of your existing 
path, as depicted below (the red dotted line is the smoothed out path):

Demo
You  will  need  to  demo  your  path  planning  behavior  at  lab-time.  As  mentioned 
before, your robot should go back and forth from one side of the field to the other, 
while there are Orange (color ID 5) obstacles on the field. These obstacles might 
slowly change configuration between runs.

Submission
Your entire homework should be submitted by copying it into the “dropbox/lab04” 
folder on your personal  AFS space before the due time.  Make sure to submit 
your C# code as well!

Write-Up

Page 4 of 5



Please also submit a write-up for this lab (one write-up per group is fine).  In it, 
describe what internal data-structures you used in your C# code and which path 
planning algorithm you implemented.

Part 2. Write-Up about the Course and Robotics Studio 
(10%)
In addition to your normal write-up that you will submit for part 1, we would also like 
you to quickly give us some feedback by answering the following three questions:

1) Learning/Course

Please give us some feedback about your course experience, in terms of learning 
the main concepts of perception, cognition, and action in robots.  Refer also to your 
experience in the Labs - have they been too hard, too easy, or just right, at the 
conceptual,  and  at  the  implementation  levels.  Any  comments  to  support  your 
opinions will be particularly appreciated.  You may want to mention also what you 
would be most curious to learn about for the remaining of the course. Furthermore, 
feel free also to make suggestions of projects that you may be interested in making, 
for the final evaluation.

2) Robotics Studio Bug Reports (for all homeworks)

Please let us know about any particular Robotics Studio Bugs, especially if they are 
grave and/or reproducible.

3) Robotics Studio Annoyances / Improvement Ideas / Feature Requests 
(for all homeworks)

If you have any particular ideas on how to improve Robotics Studio in a way that 
would make future students’ lives easier, please let us know. 

Please  place  your  answers  to  these  three  questions  in  a  separate  file 
called “eval.txt” in your “dropbox/lab04”. Thank You!

Page 5 of 5


	CMRoboBits (15-491) Fall 2007 – Homework4
	Due Wednesday, October 22th 2008 at the beginning of lab (12:30pm)

	Part 1. Overhead Vision and Probabilistic Path Planning (RRT) (90%)
	The Vision Service
	General Vision Hints
	Obtaining position/orientation
	RRT path planning
	ERRT planning
	RRT path smoothing (optional)
	Demo
	Submission
	Write-Up

	Part 2. Write-Up about the Course and Robotics Studio (10%)

