
Midterm (version A) 15-451 Algorithms Fall 2007

Name: Section:

One sheet of notes is allowed. Closed book.

1 2 3 4 Total

43 20 21 16 100

1. Multiple Choice: circle the correct answer (43 pts)

For (a)-(c), assume the base-case T (x) = 1 for x ≤ 3.

(a) The recurrence T (n) = T (n/3) + T (n/2) + n solves to:

Θ(1) Θ(log n) Θ(nlog3 2) Θ(n) Θ(n log n)

(b) The recurrence T (n) = T (2n/3) + 1 solves to:

Θ(1) Θ(log n) Θ(nlog3 2) Θ(n) Θ(n log n)

(c) The recurrence T (n) = 2T (n/3) + 1 solves to:

Θ(1) Θ(log n) Θ(nlog3 2) Θ(n) Θ(n log n)

(d) Consider the following sorting algorithm: first insert all n elements into a B-
tree with t = 2 (so this is a 2-3-4 tree). Then do an inorder traversal of the
tree, to print everything out. This takes time:

Θ(n) Θ(n log n) Θ(n2) Θ(n2 log n)

(e) Suppose we have a sorting algorithm that in addition to regular comparisons,
is also allowed super-comparisons: a super-comparison takes in three elements
and outputs those elements in order from smallest to largest. So, unlike a
regular comparison that only has two possible outcomes, a super-comparison
has 3! possible outcomes. Which of the following is a correct lower bound on
the number of super-comparisons needed to sort an array of size n?

log2(n!) log3(n!) log6(n!) n log2(n) n2

1



(f) Al Gore-ithm (distant cousin of the former VP) gives you a data structure
for a certain task with amortized cost O(1) per operation. What does this
amortized cost bound imply about a sequence of n operations? (Circle one).

(a) The total cost is O(1) and each operation costs O(1).

(b) The total cost is O(n) and each operation costs O(1).

(c) The total cost is O(n) but a single operation might cost as much as Ω(n).

(d) The total cost is O(n) but a single operation might cost as much as
Ω(log n).

(g) The Hamming distance between two n-bit vectors A and B is the number of
locations i such that A[i] 6= B[i]. What is the expected Hamming distance
between two random n-bit vectors (each location in each vector is determined
by a fair coin flip)?

1 n/4 n/2 3n/4 n

(h) Consider a random permutation of the numbers 1 . . . n. A number in this
permutation is called a Biggie if it’s greater than all the numbers to its left.
(Note that the number that ends up in the first position is definitely a Biggie.)

• What’s the probability that a number in position i is a Biggie? (The
positions are numbered from left to right, starting from 1.)

1 1/2 1/
√

i 1/i 1/
√

n 1/n

• Building on your answer above, what’s the expected number of Biggies in
the whole array?

Θ(1) Θ(log n) Θ(
√

n) Θ(n)

2



2. Truth or counterexample (20 pts). For each statement below, indicate whether it
is true or false. If true, give a short proof. If false, give a counterexample.

(a) The order in which keys are inserted into a B-tree does not affect the final tree
that is produced. That is, given a set of (distinct) keys, all insertion orders
produce the same B-tree.

(b) Given a graph G, running Depth-First-Search, where you traverse edges in
order of length, finds the MST. Specifically, the proposed algorithm is the
following (starting from some arbitrary node v):

Min-DFS-tree(v):

Mark v as visited.

For each edge (v,w) in order from shortest to longest,

If w is not marked,

Put (v,w) into the tree

Recursively run Min-DFS-tree(w)

3



(c) The optimal binary search tree for a sequence of lookup requests must have
the most frequently-requested element at the root. (Recall from Homework 3
that the optimal binary search tree for a sequence of requests is the tree of
least total cost.)

4



3. Dynamic Programming (21 pts). Given two sequences X and Y let C(X, Y ) denote
the number of times that X appears as subsequence of Y . By subsequence we mean that
the characters in X appear left-to-right in Y , but they do not have to be contiguous. For
instance, the sequence AB appears 4 times as a subsequence of ADABCB. Let Xi denote
the first i characters of the string X and let X[i] denote the ith character (similarly for
Y ). Let m denote the length of X and let n denote the length of Y .

(a) Write a recurrence for C(Xi, Yj).

C(Xi, Yj) =











if X[i] 6= Y [j]

if X[i] = Y [j]

Now set up the base cases so that your recurrence is correct.

C(X0, Yj) =

C(Xi, Y0) = if i > 0

(b) Let C[i, j] be a 2-dimensional m + 1 by n + 1 matrix initialized to all −1s. De-
scribe briefly, (or write pseudocode) how to convert your solution to part (a) into
a dynamic programming algorithm to compute C(X, Y ). You may use either a
bottom-up or top-down approach.

(c) What is the running time of your algorithm as a function of m and n (use O
notation)

5



4. Hashing (16 pts) Let H be a set of k hash functions {h1, . . . , hk} mapping a universe
U of size 2n into the range {0, 1}. So, M = 2.

(a) Prove that if k ≤ n−1 then there must exist x and y in U (x 6= y) that collide
under every hash function in H .

(b) Prove that if k < 2(n − 1) then H cannot be a universal hash family. For
instance, if U has size 8, then H needs to contain at least 4 functions. Hint:
use part (a).

6


